NATIONAL
V]NSTRUMEH“'

Document Type: Tutorial
NI Supported: Yes
Publish Date: Feb 18, 2009

Introduction to MODBUS

MODBUS is an application-layer protocol based on a client/server or request/reply architecture. It was published by Modicon and 1979 and is primarily used in industrial applications. The following
tutorial outlines the high level functionality of the MODBUS application layer with emphasis on the specifications for a serial implementation and TCP/IP specification. For more details, please see
the complete MODBUS specifications on www.modbus.org.

Table of Contents

. MODBUS Protocol

. Hardware Implementations

. LabVIEW Libraries

. MODBUS IO server

. MODBUS Frequently Asked Questions
. 1Resources

O s WN =

MODBUS Protocol

Introduction

The MODBUS protocol follows a client/server (master/slave) architecture where a client will request data from the server. The client can also ask the server to perform some action. The client
initiates a process by sending a function code that represents the type of transaction to perform. The transaction performed by the MODBUS protocol defines the process a controller uses to
request access to another device, how it will respond to requests from other devices, and how errors will be detected and reported. The MODBUS protocol establishes a common format for the
layout and contents of message fields.

During communications on a MODBUS network, the protocol determines how each controller will know its device address, recognize a message addressed to it, determine the kind of action to be
taken, and extract any data or other information contained in the message.

Controllers communicate using a master/slave technique where only one device, the master, can initiate transactions or queries. The other devices, slaves, respond by supplying the requested
data to the master or by taking the action requested in the query. Typical master devices include host processors and programming panels. Typical slaves include programmable controllers.

—
reply

L2

sowe slave siave

Figure 1: Basic MODBUS Network1

Client Server

Initiate request
RS R | -
T Perform the action
Initiate the response
P

|
Receive the response

Figure 2: Basic MODBUS Transaction1

The messages exchanged between the client and the server is called frames. There are two types of MODBUS frames: Protocol Data Unit (PDU) and Application Data Unit (ADU). The PDU frames
contain a function code followed by data. The function code represents the action to perform and the data represents the information to be used for this action. ADU frames add a little more
complexity with an additional address part. ADU frames also provide some error checking. Both the ADU and PDU frames follow Big-Endian encoding.

1/10 WWW.hi.com

http://search.ni.com/nisearch/app/main/p/lang/en/pg/1/ap/tech/sn/catnav:tu,ssnav:dzn

ADU

PDU

Figure 3: MODBUS Frame1

MODBUS transactions always perform a set of actions by reading or writing to a set of four data types. Table 1 describes the four data formats used by the MODBUS application layer.

Discretes Input Single bit Read-Only
Cails Single bit Read-Write
Input Registers 16-bit word Read-Only
Holding Registers 16-bit word Read-Write

Table 3: MODBUS Data Types'

The Discrete Inputs represent a single bit (Boolean) which can only be read. In other words, the client can only perform a read action on the discrete inputs. The same holds for the Input
Registers. The client can only read the server’s Input Registers. The difference between the Discrete Inputs and the Input Registers is that the Input Registers represent 16 bits while the Discrete
Inputs are only a single bit. The Coils also represent a Boolean data type which can be read and written from the client. The Holding Registers represent a 16 bit word that can be read and

written to.

Input Discrete

Coils MODBUS Request

Input Registers

Holding
Registers

MODBUS SERVER DEVICE

Figure 4: MODBUS Transaction with Data Types1

The Complete MODBUS Transaction

As mentioned before, the type of action that the server performs is defined by a function code. For example, if the client wants to reads a certain Discrete Input, it will send a function code of 0x02
followed by the address of the desired Discrete Input. The server will read the 0x02 and will know that the client wants a Discrete Input. The server will retrieve the Discrete Input from the given

address and reply back to the client.

Client Server

Initiate request

Function 02 Perform the action
Starting Address Hi 00

Starting Address Lo ca Initiate the response
Quantity of Inputs Hi 00

Quantity of Inputs Lo 16 |-

Field Name (Hex)
Receive the response Function 02
Byte Count 03
= Inputs Status 204-197 AC
i’efdlﬂa"'e Inputs Status 212-205 DB
pcHon Inputs Status 218-213 35

Byte Count 03
Inputs Status 204-197 AC
Inputs Status 212-205 DB
Inputs Status 218-213

2/10 WWW.hi.com

Figure 5: Complete MODBUS Transaction1

More on Function Codes

There are three main types of function codes: Public, User Defined, and Reserved. Since the public function codes are validated, publicly documented, and have available conformance tests by
the MODBUS-IDA.org community, most MODBUS devices implement them. Each of the public function codes are associated with a well defined function. A brief overview of the public function
codes is presented in Table 2. More information on public function codes can be found at www.modbus.org.

Function Codes
code Sub |(hex)
code
Physical Discrete |Read Discrete Inputs 02 02 8.2
Inputs
. |Read Colls 01 01 B.1
acms | IMemalBits e Single Coil 05 05 | 65
Physical coils |Write Multiple Coils 15 OF | 6.1
Data Physical Input Read Input Register 04 04 8.4
Access Registers.
Read Holding Registers 03 03 6.3
;:cléisl: Internal Registers Wi'ile Singlle Regis_ler 06 06 | 66
Or Write Multiple F 16 10 | 8.12
Physical Output Read/Write Multiple Registers | 23 17 | .17
Registers Mask Write Register 22 16 | 6.1
[Read FIFO queue 24 18 | 6.18
'Read File record 20 14 6.14
File record access |Wrila File record 21 15 | 6.15
|Read Exception status 07 07 B.7
|Diagnostic 08 |00-18,20| 08 | B.8
Diagnostics |Get Com event counter 1 o8| B89
|Get Com Event Log 12 0cC | 6.10
Report Slave ID 17 11 | 6.13
[Read device Identification 43 14 2B | 6.21
Qther Encapsulated Interface 43 13,14 | 2B | 6.19
Transport

Table 2: Public Function Codes1

In the previous example, we used function code 0x02 to read the Discrete Inputs. We can look at this function code in more detail, since it is a public function code.

Request

Function code 1 Byte ox02

Starting Address 2 Bytes 0x0000 to OxFFFF

Quantity of Inputs 2 Bytes 1 to 2000 (0x7D0)
Response

Function code 1 Byte ox02

Byta count 1 Byte N*

Input Status N* x 1 Byte

*N = Quantity of Inputs / 8 if the remainder is different of 0 = N = N+1
Error

| Error code 1 Byte 0x82

Figure 6: Detailed Function Code Example1

As seen in Figure 6, the function code must be followed by 2 bytes for the starting address and 2 bytes for the number of inputs the client requires. The server must respond with the function code,
followed by the 1 byte representing the number of bytes sent and then the Discrete Input values. The complete transaction is shown below.

Client Server

Initiate request

Function 02 Perform the action
Starting Address Hi 00 i
S Siing Address Lo a4 Initiate the response
Quantity of Inputs Hi 00
Quantity of Inputs Lo 16|
- Field Name
Receive the response Function
Byte Count 03
= Inputs Status 204-197 AC
ﬁffrf‘;’u'ﬁi’"" o Inputs Status 212-205 DB
Byte Count _T Inputs Status 218-213 35
Inputs Status 204-197 AC
Inputs Status 212-205 DB
Inputs Status 218-213 35

Figure 7: Complete MODBUS Transaction1

In contrast, the user defined codes are unique for each MODBUS device. They are usually tied with a special set of functions which are only available for the specific device. These will be detailed

3/10 WWW.hi.com

http://www.modbus.org

in the device manufacturer's manual.

Hardware Implementations

Serial Implementation

There are two serial modes that the MODBUS application layer can follow: RTU and ASCII. In RTU, the data is represented in Binary format, whereas the ASCIl mode represents the data such
that it is human readable. Figure 8 and 9 demonstrate the difference between these two modes.

MODBLUS message
Start Addrass | Function Data End
2 3.5 char 8 bits 8 bits N x B bits 16 bits =35 char
Frame 1 Frame 2 Frame 3
v A L1, LA
.._.....5 .._...E i 35char ' i
alt least 3.5 chiar dt least 3.5 ctar |
4.5 char

Figure 8: MODBUS RTU Serial Frame1

Data

0 up to 2x252 char(s) 2 chars 2 chars
CRLF

Figure 8: MODBUS ASCII Serial Frame1

The most common serial protocols used with MODBUS are RS-232 and RS-485. For more details on these protocols, please see this link.

TCP Implementation

As in many TCP applications, the first requirement is to establish a connection between the client and the server. In MODBUS, the server will be listening on port 502 and the connection
establishment follows the TCP/IP protocol. When connection has been established, the client can build a request for the server. The request contains a PDU (MODBUS frame described above)
followed by a MPAB header, as shown in Figure 10. Table 3 represents a template for the MPAB header.

TCP Packet
TCP Header TCP Data
MPAE Header MODBUS Frame

Figure 9: MODBUS TCP Frame

Description Size Example
MBAP Header |Transaction ldentifier Hi 1 Ox15
Transaction Identifier Lo 1 0x01
Protoce! Identifier 2 Qx0000
Length 2 00006
Unit Identifier 1 0xFF

Table 3: MBAP Header

The Transaction Identifier can be like a “TCP Sequence Number” used to keep track of which MODBUS transaction the packet is associated with. This is important because, in MODBUS TCP, the
server can handle many requests at the same time. This is not possible in MODBUS Serial.

4/10 WWW.hi.com

http://digital.ni.com/public.nsf/allkb/2CABB3FD5CAF2F8686256F1D005AD0CD

The Unit identifier is typically used to address the MODBUS slave. When using MODBUS TCP, the address of the slave is its IP address and the Unit Identifier in the MBAP header is not used.

Figure 10 demonstrates a complete MODBUS TCP transaction.

CLIENT
(1P1)

fd=socket()

bind(fd,n)

connect(fd,IP2,502)|

T SYNJ
T

. SYNK,ACKJ+1

DBUS Response PpU j

«MODBUS Response PDUY

\ Mo
rec»f[fd)

v
close(fd} .

—

‘«—_____ACKof FIN

-

“_\

—

L ACKK+1
T T
send(fd) Mo
u\%S
Reg,,
—ZqUue
send(fd) B St Ppyy
{_Mc
recy(fd) “ﬁ{ﬁﬁe
i “'“‘Rr:{gff Py
i _"‘"'\-\-__‘___)
: T
Y JMODBUS Response ppy 1
send(fd) N5
- DR
recy(fd) 8 Rogyee
! t P,
i —Dy N

&‘

FIN

H__&CK of FIN
T
e

—

SERVER
(IP2)

fd'=socket()

bind(fd',502)

listen(fd")

fd"=accept(fd")

recv(fd™

v
recv(fd")

v
send(fd")
recv:(f "y

v
send(fd")

i send(fd")

close{fd")

Figure 10: Complete MODBUS TCP Transaction1

LabVIEW Libraries

You can download free MODBUS libraries for LabVIEW. A great point to start for your application is to look at the examples supplied with the libraries. There are examples for master (client) and

slaves (server) for both the serial and TCP implementation of the MODBUS protocol.

5/10

WWW.hi.com

http://sine.ni.com/nips/cds/view/p/lang/en/nid/201711

Serial
Examples

“ﬁ‘ .Q;Search 3 View
= ElEE
I

TCP
Examples

Figure 11: LabVIEW MODBUS Libraries

MODBUS Serial Master

The first operation to be done in MODBUS serial master is to open a VISA session and initialize the COM port with all the proper configuration parameters (baud rate, start bit, stop bit, etc).

WISA resource name

Figure 12: VISA Open and Configure Session to Serial Port

As explained in the previous paragraphs, the master (client) usually queries the slave (server) for some data. In the LabVIEW libraries, this is represented by a while loop which continuously
queries the slave for the Discrete Inputs, Coils, Input Registers and Holding Registers.

P:EI:ED:EI:Eb:I:[:Eb:EI:Eb:E;[:Eb:I:[:Eb:E;[:Eb:E;[:Eb:E[:Eb:u‘ i} [D..4] vtl;:Eb:EI:Eb:I:[:Eb:EI:Eb:EI:Eb:E[:Eb:EI:Eb:E;[:Eb:I:[:Eb:E;[: }

Coils b Write: [Write Coils if values changed]
I [TF}:

[+RTL ¥

Figure 13: Master Main Loop

If we look deeper into the MB Serial Master Query.vi, we see four main Vls used in sequence. The first formats the data into a MODBUS frame. This frame is then written to the serial port using a
VISA Write VI. The master then expects a response from the slave, so a VISA Read VI is called to read the bytes at the serial port. This information is then reformatted to be handled and
displayed in LabVIEW.

6/10 WWW.hi.com

Slave Address

Write MODBUS

Frame to serial Port
Decode Frame

]

Read response from Serial Port

Format MODBUS request
Figure 14: Master Query

WISA resource name ouk

Figure 15: VISA Write

On the slave side, we also need to continuously monitor the serial port for requests. In this case, we use a timed loop to ensure that the serial port is read at specific intervals.

B|Error
7

ms |
Periode s [=
7 I rror H

(U2 by dt
= Finished Late? [i-1]#
&

Modes

Slave Address

Timeouts
o5

A o
Deron Running

>

@Serial Dermaon Running

o

Figure 16: Slave Main Loop

MODBUS TCP
Similarly to opening a VISA session to a serial port, the first operation done by the master (client) is to connect to the slave (server).

Remote IP Address

Figure 17: TCP Open Connection
7/10 WWw.ni.com

The next action taken from the master is to send a query to the slave. As in the serial case, we need to organize the data to conform with the MODBUS TCP frame specification.

MBAP Header

Modbus Data Unit

Function Code
Data

[Length = Size of the MODEUS PDU + the Unit ID byte. |

Figure 18: Format TCP MODBUS Request

In contrast to a VISA Write, we use a TCP Send.vi to send the MODBUS frame to the TCP connection.

TiZP Connection Refrum in

TCF Connection Refnum {dup)
FE]

error in {no errar) errar out;

e 1

Figure 19: TCP Send

This is also followed by a TCP Read.vi as the master expects a frame back from the slave.

Transaction IC§0
Protocol 1000
Length jo

Uit I ID

MEAP Header

* T]| Conneckion 1D {dup)
iZonneckion I

|II_._§ = »Fau]| Maodbus Data Unit

..... 5 Exception Code

errar in {no error)

I at b . ; - +#Za 5]| error out

Timeout
| Iszﬂ

Length = Size of the MODEUS PDU + the Unit ID byte,
Since we already read the Unit ID byte, we need ko subtrack 1
ko get the size of the MODBUS PDU to read.

Figure 20: TCP Receive

Since the MODBUS TCP slave can communicate with more than one device at any point in time, it needs to continuously monitor if other masters are trying to establish a connection.

8/10

WWW.hi.com

[Ma Errar 't]

Figure 21: MODBUS TCP Slave Main Loop Part 1

The MODBUS TCP also needs to monitor the masters requests and respond to these requests to establish a connection; similarly to the serial slave.

s
i |“_|| e 7 Demaon Running B[Error
— dt FaE] i
7 Finished Late? [i-1]» :l

WEHRErer DEma Funning R e |

of connections

False *
et All Connections |
Eew
]
- i
] o

Figure 22: MODBUS TCP Slave Main Loop Part 2

MODBUS IO server

Please note that you can also turn your RT target into a MODBUS Slave using 10 servers, part of the LabVIEW Datalogging and supervisory control module.

MODBUS Frequently Asked Questions

Q: Why is my MODBUS device timing out and not receiving responses from LabVIEW?

A: First, make sure that your serial port settings match the serial settings for the MODBUS device. Then check your device manual for the type of serial cable you need to communicate with the
device. Some devices require straight-through cables while others require crossover cables.

Note: You must have NI-VISA installed to communicate with serial devices.

Tip: Make sure you select the serial port connected to your device when sending and receiving commands.

Q: How can | verify that my serial port is working correctly?
A: Refer to Serial Communication Starting Point for information and troubleshooting tips.

Q: The register values are not being updated on the MODBUS device or in LabVIEW, but the MODBUS device is not timing out. What could be the reason for this?

A: Make sure that you specify the correct address in the MODBUS device configuration software for the register you want to use in LabVIEW. In most MODBUS device configuration software, you
must enter a name for the register you want to use. Per MODBUS convention, the register address of the slave device is calculated by subtracting 1 from the register name that you specify in the
master device configuration software. The MODBUS LabVIEW library expects register addresses, not register names, so you may have to subtract 1 from the address you defined in the MODBUS
device configuration software. For example, a register name defined as 2 in a MODBUS configuration device translates to register address 1 in the Holding Registers table of the LabVIEW
MODBUS library.

MODBUS Device Holding Register Name = 2
LabVIEW Holding Register Address = 1

The MODBUS data model is based on a series of four tables: Discrete Inputs, Coils, Input Registers, and Holding Registers. These tables do not overlap in LabVIEW. Some MODBUS devices use
the following start addresses for these tables.

0x00000 for the Coils

0x10000 for the Discrete Inputs
0x30000 for the Input Registers
0x40000 for the Holding Registers

9/10 WWW.hi.com

http://zone.ni.com/devzone/cda/tut/p/id/7210
http://sine.ni.com/nips/cds/view/p/lang/en/nid/1010
http://zone.ni.com/devzone/cda/tut/p/id/4049

Because the tables do not overlap in LabVIEW, ignore the first digit of the start addresses when defining the addresses in LabVIEW. For example, a register name defined as 0x40000 in a
MODBUS configuration device translates to register address 0 in the LabVIEW Holding Registers table.

MODBUS Device Holding Register Name = 0x40000
LabVIEW Holding Register Address = 0

Sometimes you need to subtract 1 from the register name that you specify in the master device configuration software and ignore the first digit of the start address to ensure proper register
addressing. For example, a register name defined as 0x40008 in a MODBUS configuration device translates to register address 7 in the LabVIEW Holding Registers table.

MODBUS Device Holding Register Name = 0x40008
LabVIEW Holding Register Address = 7

L Resources

Please note that the main resource used for this document is the MODBUS located at www.modbus.org.

Legal
This tutorial (this "tutorial") was developed by National Instruments ("NI"). Although technical support of this tutorial may be made available by National Instruments, the content in this tutorial may

not be completely tested and verified, and NI does not guarantee its quality in any way or that NI will continue to support this content with each new revision of related products and drivers. THIS
TUTORIAL IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND AND SUBJECT TO CERTAIN RESTRICTIONS AS MORE SPECIFICALLY SET FORTH IN NI.COM'S TERMS OF USE (

http://ni.com/legal/termsofuse/unitedstates/us/).

10/10 WWW.hi.com

http://www.modbus.org
http://ni.com/legal/termsofuse/unitedstates/us/

