

Application Note AN119 1/9 Document 98-MAPP-119, Rev A

Application Note AN119
Modbus Communication with Micronor Fiber Optic Sensor Controllers

Objective

This application note is intended to instruct users on how to connect a Fiber Optic Controller, such as
the MR304, MR320, or MR330, to a PC computer, automation controller, or a private Ethernet network.

Background

The Micronor fiber optic controllers typically offer various interface possibilities to connect to a host
computer using Modbus/RTU protocol. The controllers can be configured to different types of sensors
by connecting a PC and configuring the appropriate parameters. For instance, the MR320 controller
can provide incremental sensors with different resolution and speed requirements. The controller can
also be configured to output speed or position values in analog fashion. The scaling is accomplished
via the built-in Modbus/RTU interface. If the controllers are used for position sensing then the internal
position counter can be read via the Modbus/RTU interface directly into a SPS controller or computer.

Micronor offers a ZAPPY software for the MR320 series controllers and a ZapView software for the
MR330 position sensor controller.

Modbus Architecture

The Modbus is based on the classic serial
RS242/RS245 interface hardware. It can operate at
baud-rates from 9,600 baud to 112,000 baud or
even higher.

Figure 1 shows a half-duplex topology where all the
transmitter outputs are normally in high impedance
state and all receivers are actively listening. Let’s
assume Node 1 is the master and by definition
Modbus/RTU can only have one master. In order to
issue a command, Node 1 asserts the transmitter output, sends the command, and after finishing the
command immediately sets the output to high impedance again. The addressed receiver now asserts
the output of its transmitter and sends an appropriate response.

Figure 1: RS485 Half-Duplex

Application Note AN119 2/9 Document 98-MAPP-119, Rev A

Figure 2 describes a full-duplex
configuration that transmits and
receives simultaneously, increasing
communication throughput.

Fundamentally, this makes Modbus
hardware compatible with all
Comport interfaces typically found on
computers. However, the user must
make sure that the RS232 signal
levels are translated to a 5V
complementary signal.

The Micronor MR302-1, MR302-2,
MR320, and MR330 can be configured either Half-Duplex or Full-Duplex. Here we describe this using
a USB Virtual Comport application which requires a USB to RS485 Converter cable. Grid Connect: PN
GC-ATC-820 (www.gridconnet.com)

Note: ATC-820 must be internally connected with +5V. Open the adaptor and make connection.

Figure 2: RS485 Full-Duplex Configuration

Figure 3: Interfacing the MR302-2 OEM PCB using Half-Duplex

Computer USB RS485
Converter

GC-ATC-820

MR302

PCB

+5V
GND

TX+
TX-

RX+
RX-

http://www.gridconnet.com/

Application Note AN119 3/9 Document 98-MAPP-119, Rev A

Table 1: Connections to MR302-2 OEM PCB

Modbus Protocol

For detailed information visit the Modbus consortium website: www.modbus.org

There are three distinct Modbus Protocol

a.) Modbus ASCII, transmits all data in ASCII format. Only one master is allowed.

b.) Modbus RTU, transmits data in binary format. Only one master is allowed. Micronor
Controllers utilize this specific version.

c.) Modbus TCP/IP, transmits data in TCP packets over Ethernet. Multiple masters are allowed.

Modbus/RTU Telegram

Only the master can initiate a communication transaction. Typically the very first byte sent is the device
address (DA). Only the receiver whose pre-programmed address matches this byte will respond.

1 2 3 4 5 6 7 8
DA
DA

FC
FC

RA
NB

RA
DD*

NR
DD*

NR
CRCL

CRCL
CRCH

CRCH

J1 Cable Color Function USB Adaptor
1 Brown n/c
2 Red +5V
3 Orange GND
4 Yellow n/c
5 Green Encoder A-
6 Blue Encoder A+
7 Purple Encoder B-
8 Grey Encoder B+
9 White +5V 3 (Supply)
10 Black GND 4 GND
11 Brown RCV- 2
12 Red RCV+ 1
13 Orange TX- 2
14 Yellow TX+ 1
15 Green Zero Input
16 Blue Status Out

DA = Device Address DD = Data to read CRCL = CRC Byte low
FC = Function Code WW = Data to write CRCH = CRC byte high
RA = Register Address SF = Sub Function DD* = Number of bytes

requested or being sent NR = Number to Read EC = Error Code
NB = Number of bytes

http://www.modbus.org/

Application Note AN119 4/9 Document 98-MAPP-119, Rev A

The Function Code (FC) determines what kind of action the slave receiver performs. Generally, it is
either reading or writing to a particular register. The register number follows as a 16bit (2byte) register
address where the read or write action should take place. Followed by the register address is the
number of registers to be written, or read starting with the Register Address. For telegram integrity
check a 16bit CRC (Cyclical Redundancy Check) word is supplied with each telegram.

This application note is not meant to explain the Modbus protocol. More information is available on
www.modbus.org.

The user’s software on the PC must assemble the Modbus protocol, including the CRC, and then send
the appropriate Comport. Likewise received telegrams must first be checked against the CRC code
and then disassembled for the data value.

Useful tools are available on the worldwide web. Consult www.modbustools.com.

Modbus Communication Timing

As described above, Modbus protocol requires the master to query an individual node by sending a
device address (DA) and a Function Command (FC) or request. Only the addressed device may
respond.

The node (in our case the MR302-2) typically responds within
3ms after a valid request / command has been received. At a
baud rate of 57,600 baud it is possible to read out the position
counter at a rate of 10ms. In a bussed environment device 1,
2, 3, 4 ... n may be addressed at that same rate so as to not
cause a bus conflict.

Figure 4 shows the device (MR302-2) responding within 3ms
upon receiving a valid request. The maximum latency
uncertainty varies within 1.5ms.

The device is always in listening mode unless when it is
transmitting. The pink trace shows clearly when the receive
channel is disabled while the unit is transmitting a response,
blue trace.

Three MR302-2 devices have been bused together as shown
in Figure 6. The boards have been given addresses 230, 231,
232. Each board can now be polled as part of the Modbus
system. In this example the controller polls one board every
15ms. The update rate for each individual motion axis is
45ms.

Figure 4: Scope Capture of Response Timing

Figure 5: Scope Capture of Update Rate

http://www.modbus.org/
http://www.modbustools.com/

Application Note AN119 5/9 Document 98-MAPP-119, Rev A

Interfacing with PC-Computers

If the PC has a RS232 interface then a simple level converter is required. The level converter takes the
±7.5V signal of the RS232 port to a 5V complimentary signal as required by the RS422/RS485 definition.

Figure 6: RS232 interfacing to Modbus

Suitable interface modules are available from multiple suppliers. Micronor recommends the RS232-2
cable interface. Antona ANC-6090 is a convenient translator as well. http://antona.com/dta6090.htm.

Most modern computers no longer offer a serial interface port. However, low cost USB to serial interface
converter cables are available. Micronor recommends the Grid-Connect ATC-820 RS-485 Interface
cable. www.gridconnect.com

Figure 7: USB-Serial Interface Connection

The supplier of these devices will typically always supply a driver that must be installed in the PC. This
driver is called a VCP (Virtual Com Port). It lets user software seamlessly and without modification access
the Comport as it were in fact a classic serial port. More information on VCP can be found at:
www.ftdichip.com

The Modbus TCP/IP protocol was invented to take advantage of the high speed connection of the
ubiquitous Ethernet networks. There are tremendous advantages, the system can have multiple masters
as well as allows slave devices to initiate a transmission by sending alerts to a particular master. The
automation industry is migrating to this more versatile network infrastructure. In order to make the
transition easier, numerous suppliers have built Modbus TCP/IP to Modbus/RTU bridges. These
modules accept the Modbus TCP/IP protocol and translate it to the Modbus/RTU protocol. Figure 8
shows the setup with one computer (master) talking to a number of Modbus/RTU devices. One Ethernet
link is sufficient to address a number of devices on the Modbus/RTU serial bus.

http://antona.com/dta6090.htm
http://www.gridconnect.com/
http://www.ftdichip.com/

Application Note AN119 6/9 Document 98-MAPP-119, Rev A

Figure 8: Modbus TCP/IP to Modbus/RTU Network Bridge

On the computer, the software must communicate using the Modbus TCP/IP protocol. Modbus TCP/IP
telegram, including the device address, is then embedded into the TCP transmission block. The bridge
device disassembles the received TCP block and communicates via serial interface to the Modbus/RTU
devices. Typically the Bridge device uses a dedicated fixed IP address.

The versatility of the TCP/IP protocol is
due to its socket based feature. Once the
computer establishes communication
with an IP address, a socket is created on
both ends and a communication channel
is established. This concept allows for
each device to create many sockets
allowing the possibility of more than one
master to communicate over Modbus
TCP/IP.

Multiple application programs may run on the same
PC and talk to the same device. Similarly, multiple
applications of the same type may run on the same
PC but address a different device each.

It is definitely also possible for more than one master
to access the same device.

Figure 10: Multi Master Connection with Modbus TCP/IP

Figure 9: Multi Application Connections Modbus TCP/IP

Application Note AN119 7/9 Document 98-MAPP-119, Rev A

Wiring of the Ethernet Modbus TCP/IP Bridge:

Gridconnect manufactures a converter bridge that allows for easy conversion. Figure 11 demonstrates
how installation is easily accomplished. It is important to note that Output A from the converter
correlates to TX/RCV (+) on the MR320 Controller. The same goes for Output B correlating to (-).

The bridge may be powered from the same 24V DC power supply used for powering the MR320
controller.

When using Modbus TCP/IP with MR320 make sure firmware of MR320 is version 2.14 or higher. For
firmware updates of MR320 contact Micronor for an RMA number.

Configuring the Modbus TCP/IP Bridge

The NET485 must be configured before it can be used. Please use the provided Gridconnect software
“Device Installer”. Under the TAB page titled “Telnet Configuration” use the following recommended
settings:

Modbus/TCP to RTU Bridge Setup
1) Network/IP Settings:
 IP Address 192.168.1.65
 Default Gateway --- not set ---
 Netmask --- not set ---
2) Serial & Mode Settings:
 Protocol Modbus/RTU,Slave(s) attached
 Serial Interface 9600,8,N,1,RS422  NOTE: May Say RS485 Instead
3) Modem/Configurable Pin Settings:
 CP1 Status LED Output

MR320 NET485

GND SGND
TX+ RXD A
TX- RXD B

RCV+ TXD A
RCV- TXD B
VS+ 8-24VDC
GND GND

Figure 11: Configuration of MR320 to Converter

Application Note AN119 8/9 Document 98-MAPP-119, Rev A

 CP2 DTR Output Fixed High/Active
 CP3 Diagnostic LED Output
4) Advanced Modbus Protocol settings:
 Slave Addr/Unit Id Source .. Modbus/TCP header
 Modbus Serial Broadcasts ... Enabled (Id=0 used as broadcast)
 Modbus/TCP pipeline Disabled (new MB/TCP request aborts old)
 MB/TCP Exception Codes No (no response if timeout or no slave)
 Char, Message Timeout 00010msec, 01000msec
 Serial TX Delay 0010msec

Slave address (0 for auto, or 1..255 fixed otherwise) (0) 0
Allow Modbus Broadcasts (1=Yes 2=No) (2) 1
Use MB/TCP 00BH/00AH Exception Responses (1=No 2=Yes) (2) 1
Disable Modbus/TCP pipeline (1=No 2=Yes) (2)
Character Timeout (0 for auto, or 10-6950 msec) (10)
Message Timeout (200-65000 msec) (1000)
Serial TX delay after RX (0-1275 msec) (10)
Swap 4x/0H to get 3x/1x (N) N

Software Interface

The following does not apply if using the Micronor Zappy software.

Example here is vb.net, however C# is just as easily accomplished.

Create a TCP/IP socket and connect to it

' --
' This function creates a socket and connects to the Modbus Bridge device
' Port address is defined by Modbus and is always 502
'
' --

 Public Sub Connect(IPAddr As String, Port As UShort)
 Try
 Dim IpA As IPAddress = Nothing
 If IPAddress.TryParse(IPAddr, IpA) = False Then
 Dim hst As IPHostEntry = Dns.GetHostEntry(IpA)
 IPAddr = hst.AddressList(0).ToString
 End If

 TCPSynchCl = New Socket(IPAddress.Parse(IPAddr).AddressFamily, SocketType.Stream, ProtocolType.Tcp)
 TCPSynchCl.Connect(New IPEndPoint(IPAddress.Parse(IPAddr), Port))
 TCPSynchCl.SetSocketOption(SocketOptionLevel.Socket, SocketOptionName.SendTimeout, ComTimeOut)
 TCPSynchCl.SetSocketOption(SocketOptionLevel.Socket, SocketOptionName.ReceiveTimeout, ComTimeOut)
 TCPSynchCl.SetSocketOption(SocketOptionLevel.Socket, SocketOptionName.NoDelay, 1)
 IsConnected = True
 CompletionCode = 0
 Catch Err As System.IO.IOException
 IsConnected = False
 CompletionCode = -1
 Throw Err
 End Try
 End Sub

Create a Modbus TCP/IP header for reading data

' --
' Create the Modbus header for Read and Write

Private Function CreateReadWriteHeader(ID As UShort, Device As Byte, startReadAddress As UShort,
 numRead As UShort, startWriteAddress As UShort, numWrite As UShort) As Byte()
 Dim Data(numWrite * 2 + 16) As Byte
 Dim _id As Byte() = BitConverter.GetBytes(CShort(ID))
 Data(0) = _id(1) ' Slave ID high byte
 Data(1) = _id(0) ' Slave ID low byte
 Dim _size As Byte()= BitConverter.GetBytes(CShort(IPAddress.HostToNetworkOrder(CShort(11+numWrite*2))))
 Data(4) = _size(0) ' Complete message size in bytes
 Data(5) = _size(1) ' Complete message size in bytes
 Data(6) = Device ' Slave address

Application Note AN119 9/9 Document 98-MAPP-119, Rev A

 Data(7) = fctReadWriteMultipleRegister ' Function code
 Dim _adr_read As Byte() = BitConverter.GetBytes(CShort(IPAddress.HostToNetworkOrder(CShort(startReadAddress))))
 Data(8) = _adr_read(0) ' Start read address
 Data(9) = _adr_read(1) ' Start read address
 Dim _cnt_read As Byte() = BitConverter.GetBytes(CShort(IPAddress.HostToNetworkOrder(CShort(numRead))))
 Data(10) = _cnt_read(0) ' Number of bytes to read
 Data(11) = _cnt_read(1) ' Number of bytes to read
 Dim _adr_write As Byte() = BitConverter.GetBytes(CShort(IPAddress.HostToNetworkOrder(CShort(startWriteAddress))))
 Data(12) = _adr_write(0) ' Start write address
 Data(13) = _adr_write(1) ' Start write address
 Dim _cnt_write As Byte() = BitConverter.GetBytes(CShort(IPAddress.HostToNetworkOrder(CShort(numWrite))))
 Data(14) = _cnt_write(0) ' Number of bytes to write
 Data(15) = _cnt_write(1) ' Number of bytes to write
 Data(16) = CByte(numWrite * 2)
 CreateReadWriteHeader = Data
 End Function

Read Data from the Device

' --
' Write Data via TCP and wait for a response

Private Function WriteSyncData(write_data As Byte(), ID As UShort) As Byte()
 If TCPSynchCl.Connected Then

 Try
 TCPSynchCl.Send(write_data, 0, write_data.Length, SocketFlags.None)
 Thread.Sleep(10)
 Dim result As Integer = TCPSynchCl.Receive(TCPSynchClBuffer, 0, TCPSynchClBuffer.Length, SocketFlags.None)
 Thread.Sleep(10)
 Dim Device As Byte = TCPSynchClBuffer(6)
 Dim MbFunc As Byte = TCPSynchClBuffer(7)
 Dim Data() As Byte

 If (result = 0) Then CallException(ID, Device, write_data(7), excExceptionConnectionLost)

 ' --
 ' Response Data Is slave exception
 If MbFunc > excExceptionOffset Then

 MbFunc -= excExceptionOffset
 CallException(ID, Device, MbFunc, TCPSynchClBuffer(8))
 Return Nothing
 ' --
 ' Write response Data
 ElseIf (MbFunc >= fctWriteSingleCoil) And (MbFunc <> fctReadWriteMultipleRegister) Then
 ReDim Data(1)
 Array.Copy(TCPSynchClBuffer, 10, Data, 0, 2)
 ' --
 ' received good data now response Data
 Else

 ReDim Data(TCPSynchClBuffer(8) - 1)
 Array.Copy(TCPSynchClBuffer, 9, Data, 0, TCPSynchClBuffer(8))
 Dim ReturnRawData(TCPSynchClBuffer(8) + 9) As Byte
 Array.Copy(TCPSynchClBuffer, 0, ReturnRawData, 0, TCPSynchClBuffer(8) + 9)
 End If
 CompletionCode = 0
 ' CallException(ID, write_data(6), write_data(7), excSuccess)
 Return Data
 Catch err As SystemException
 CallException(ID, write_data(6), write_data(7), excExceptionConnectionLost)
 End Try
 Else
 CallException(ID, write_data(6), write_data(7), excExceptionConnectionLost)
 End If
 Return Nothing
 End Function

Please contact MICRONOR INC. for details and complete source code.
There is ready made software interfaces available, such as the wsmbt.dll Modbus Master TCP/IP control
from Witten Software. See: www.modbustools.com

A free download is: http://www.codeproject.com/Tips/16260/Modbus-TCP-class

Note: The Micronor Controllers are Modbus compatible with one exception:
User software cannot read across multiple unrelated registers. When reading any register the exact
amount of registers to be read must be given in the read/write command.

http://www.modbustools.com/
http://www.codeproject.com/Tips/16260/Modbus-TCP-class

	Objective

