Micronor

a division of PHOTON CONTROL

Application Note AN129
How to interface to the Weidmann FOTEMP-T2 Signal Conditioner

1. Objective

The Weidmann FOTEMP-T2 (formerly InsuLogix T2) unit offers versatile interface capabilities with four
available interface options. This application note describes the interfaces, the software support available,
how to establish communication with each interface option and sample scripts for logging temperature.

2. Interfaces Available

Each FOTEMP-T2 unit offers a different set of interface options depending on the configuration. The
specific configuration is determined at the time when the unit is purchased.

There are a total of four interface options available, two of which are built-in to each unit. All units have a
USB interface with ASCII communication protocol and an SD card for standalone data logging. The third
interface option is RS485 which provides communication via ModbusRTU; the final interface option is
ethernet which provides communication via ModbusTCP.

Units will have either RS485 or ethernet but not both. See the ordering key below along with two quick
ship configurations.

Part Number: Description:

Fiber Optic DIN Rail Mount Signal Conditioner where

X=No. of Channels: up to 16 channels

FOTEMP-T2-X-Y-Z Y=Interface: P1=USB+RS485/ModbusRTU, P2=USB+Ethernet/ModbusTCP
Z=Calibration Option: A=Basic=-40°C to +200°C, B=HighTemp=-40°C to
+300°C, C=Extended=-200°C to +300°C

FOTEMP-T2-8-P1-A | 8 Channels, USB+RS485/ModbusRTU, Basic Calibration=-40°C to +200°C
FOTEMP-T2-8-P2-A | 8 Channels, USB+Ethernet/ModbusTCP, Basic Calibration=-40°C to +200°C

Application Note AN129 1/9 98-MAPP-129, Rev A, 29-June-2021

MICronor

a division of PHOTON CONTROL

3. Interface Communication

The following interfaces are covered below:

e USB - Serial ASCII

e SD Card

e RS485 - ModbusRTU

e Ethernet — ModbusTCP

3.1. USB - Serial ASCII

The USB interface uses a Virtual Com Port (VCP) to communicate. Please refer to Micronor
AN123 for a detailed description of the ASCII protocol and the list of commands.

The USB connection also provides compatibility with the FOTEMP-Assistant software
running on a PC.

3.2. SD Card

All FOTEMP-T2 units come with an SD card for standalone data logging. Using Modbus
communication, the data logging can be turned on or off, the sampling rate can be set and
the SD data can be deleted. See pages 9 and 11 of the InsulLogix T2 Modbus Protocol
Manual for more details.

Using ASCIl communication, the sampling rate can be set and it is possible to read and
delete the SD data. See pages 11-15 of Micronor AN123 for more details.

Application Note AN129 2/9 98-MAPP-129, Rev A, 29-June-2021

MICronor

a division of PHOTON CONTROL

3.3. RS485 - ModbusRTU

ModbusRTU serial parameters settings:

Protocol ModbusRTU

Interface RS485 (two-wire+GND)
Baud Rate 19200

Data-bits 8

Parity even

Stop-bits 1

End of Line none

Slave Address 1 (default)

Table 1. ModbusRTU Protocol

To communicate with the FOTEMP-T2 unit via RS485, a serial interface from a PC or a USB-
to-RS485 adapter is required. There are many options for USB-to-RS485 adaptors and most
all have a male D-Sub9 connector. The connection to the FOTEMP-T2 unit is a three-wire
connection as seen in Figure 1.

5

~GND ©)

\

G 9

Figure 1. D-Sub9 Female Connection (left) and FOTEMP-T2 Terminal (right)

D-Sub9 Female
(there are various pin FOTEMP-T2 Terminal Connector
designators used in the industry)
(MTX- | D-|8B B
(2Q)TX+ | D+ | A A
(5) GND 0

Table 2. RS485 Connection

Once connected, the device will appear in the Device Manager on the PC under “Ports
(COM & LPT)" as seen in Figure 2, although the device description may vary depending on
the USB-to-RS485 adapter used.

Application Note AN129 3/9 98-MAPP-129, Rev A, 29-June-2021

MICronor

a division of PHOTON CONTROL

M Device Manager

File Action View Help
= = Hm B

- Disk drives
B4 Display adapters
i Firmware
Human Interface Devices
:i‘: Imaging devices
== Keyboards
L1 Memory technology devices
(@ Mice and other pointing devices
[Monitors
P Network adapters
!' Other devices
v W@ Ports (COM & LPT)
@ USB Serial Port (COMBS)
™ Print queues

= Printers

Figure 2. PC Device Manager

Once properly connected, communicating using ModbusRTU is achieved using a Python
application, an IDE or a Modbus Master Simulator. This example uses the Python application
provided with the FOTEMP-T2 unit. Python can be downloaded from
https://www.python.org/downloads/release/python-276/.

For experimenting and writing applications, sample Python scripts are available on the
FOTEMP zip drive inside the “Software\Scripts\Single_Slave_Device” folder and the
Modbus registry is found in the InsuLogix T2 Modbus Protocol Manual.

This example will demonstrate how to change the address of the FOTEMP-T2 unit. Begin
by opening the “Software\Scripts\Single_Slave_Device” folder. Double click on
“Set_Address.py” and Figure 3 will appear. Enter the port number from Figure 2 and press
enter to connect with the unit. Finally, enter the desired address (limited to 1-255) and press
enter. The Modbus ID of the FOTEMP-T2 unit will now read the entered address (255 in this
case).

C& CA\Python27amd64\python.exe

Connect to Client
(number: i

Read Device Basic Informations
...enter to exit

Figure 3. Set_Address.py Executable with ModbusRTU

Application Note AN129 4/9 98-MAPP-129, Rev A, 29-June-2021

MICronor

a division of PHOTON CONTROL

3.4. Ethernet - ModbusTCP

ModbusTCP is a TCP packet that embeds ModbusRTU, thus serial parameters still must be
configured so that the FOTEMP-T2 unit can communicate properly. For more information
about Modbus communication, see Micronor AN119.

ModbusTCP serial parameters settings:

Protocol ModbusTCP
Interface Ethernet
Baud Rate 19200
Data-bits 8

Parity even
Stop-bits 1

End of Line none

Slave Address 1 (default)

Table 3. ModbusTCP Protocol

To communicate with the FOTEMP-T2 unit via ethernet, an ethernet connection or a USB-
to-ethernet adapter is required. Once connected, the device will appear in the Device
Manager under “Network adapters” as seen in Figure 4, although the device description
may vary.

& Device Manager
File Action View Help
o= T HE B

@ Mice and cther pointing devices
[Monitors
w ¥ Network adapters
[ASIX AX83179 USB 3.0 to Gigabit Ethernet Adapter
I? Bluetooth Device (Personal Area MNetwork)

Figure 4. PC Device Manager

Communicating via ModbusTCP is very similar to ModbusRTU, so follow the steps in Section
3.3 to download Python. However, there are two main differences when using ModbusTCP.
First, it uses the scripts in the “Software\Scripts\Single_Client_Device” folder. Second,
rather than using a COM port, ModbusTCP uses the IP address of the FOTEMP-T2 unit. The
IP address can be found by using the Lantronix Devicelnstaller software found at
https://www.lantronix.com/products/deviceinstaller/.

Once the IP address is known, the code in modbuslib.py must be changed to match
ModbusTCP protocol. Open the “Software\Scripts\Single_Client_Device” folder and then
open modbuslib.py in your preferred coding environment (e.g., Visual Studio). Change the
ModbusClient to a ModbusTcpClient as seen in Figure 5. Save the file.

Application Note AN129 5/9 98-MAPP-129, Rev A, 29-June-2021

MICronor

a division of PHOTON CONTROL

modbuslib.py 4 X

#!/usr/binfenv python

Author: Sven Geissler

Created: 2616/83/13

Company: Optocon AG,

Script's name = opto_modbus_client_helpers

HOH K O

Helper tools for testing Modbus implementation on Optocon Fotemp devices

#from pymodbus.client.sync import ModbusSerialClient as ModbusClient

from pymodbus.client.sync import ModbusTcpClient as MedbusClient

from pymodbus.constants import DeviceInformation

Figure 5. Updated modbuslib.py for ModbusTCP

This example will demonstrate how to change the address of the FOTEMP-T2 unit. Begin
by reopening the “Software\Scripts\Single_Client_Device” folder. Double click on
“Set_Address.py” and Figure é will appear. Enter the IP address of the FOTEMP-T2 unit and
press enter to connect with the unit. Then, enter the desired address (limited to 1-255) and
press enter. The Modbus ID of the FOTEMP-T2 unit will now read the entered address (1 in
this case).

L=

ect has no : ' in waiting'

gister Addr 3 Val = 1

2ncer Lo

Figure é. Set_Address.py Executable with ModbusTCP

Application Note AN129 6/9 98-MAPP-129, Rev A, 29-June-2021

MICronor

a division of PHOTON CONTROL

4. Application Programming with FOTEMP Devices

For logging temperatures using a FOTEMP-T2 device, begin by downloading Python from
https://www.python.org/downloads/release/python-276/. The following sections demonstrate
how to display the temperature measurements using a Python script. These scripts can also be
found on the FOTEMP zip drive in the “Software\Application Programming\Python_Scripts”
folder. Figure 7 and Figure 8 display the output of each script.

@ C:\Python27amd64\python.exe

“start at 2021-06-28 10:00:
*used com port: COM7
*dev_id=0060033
021-06-28
021-06-28
021-06-28
621-06-28

.188000
.209000
.234000
.256000
.275000
.311000
6.343000
.374000
.396000

wha bbb

021-06-28
021-06-28
021-06-28
021-06-28
021-06-28

00 00 00 00 00 00 €O 0O 0O

AP bbb AALEDL

NN SN0 N

PP WWWNNNN
wow

nnunnuunnununununun

www

Figure 7. USB Temperature Logging

@ C:\Python27amd64\python.exe
*start at 2021-06-28 13:40:00.363000

Figure 8. Modbus Temperature Logging

Application Note AN129 7/9 98-MAPP-129, Rev A, 29-June-2021

Micronor

a division of PHOTON CONTROL

4.1. USB Temperature Logging

#!/usr/bin/env python
coding: utf-8
#

python 2.7.10 and pyserial2.7
HW: FOTEMP-T2 USB 8CH

#

SETTINGS ...

COMPORT = 'COM7'

COMPORT_TIMEOUT = 1 # in seconds
COMPORT_SPEED = 57600 # in baud

#

import serial time

from datetime import datetime

def get_temp(ser):
rcl=""
ser.write("?02\r\n")
rc1 =ser.readline()
rc1+=ser.readline()
rc2=rc1.split("\r)[0]
re3=rc2.split(' ')
return rc3[1:]

def get_id_addr(ser):
rcl=""
ser.write("?41\r\n")
rc1 =ser.readline()
rc1+=ser.readline()
rc2=rc1.split("\n')

rc3=rc2[0].replace('\r',")

rc3=rc3.replace("#41",")

rc3=rc3.replace(' ',")

i=1

rc4=""

for char in rc3:
ifi% 2==0:

rc4 += char

i+=1

return rc4

if _name__=="__main__":

print "*start at "+datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f")

ser = serial.SerialCOMPORT, COMPORT_SPEED, timeout=COMPORT_TIMEOUT)
print "*used com port: ",ser.name
print "*dev_id="+ get_id_addr(ser)

while 1:

s=datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f')

temperatures=get_temp(ser)
#print temperatures

s=s+" C1:
s=s+" C2:
s=s+" C3:
s=s+" C4:
s=s+" C5:
s=s+" Cé:
s=s+" C7:
s=s+" C8:
print s

/10.0)
/10.0)
/10.0)
/10.0)
)
)
)
)

" +str(float
" +str(float
" +str(float
" +str(float
" +str(float

(

(

(

temperatures[O
temperatures|[1
temperatures[2
temperatures[3
temperatures[4
temperatures[5
temperatures[6
temperatures[7

/10.0
/10.0
/10.0
/10.0

"+str(float
"+str(float
" +str(float

P =~ = =

time.sleep(1) #sec

Application Note AN129

8/9

98-MAPP-129, Rev A, 29-June-2021

Micronor

a division of PHOTON CONTROL

4.2. Modbus Temperature Logging

#!/usr/bin/env python
coding: utf-8

#
python 2.7.10 and pyserial2.7
FOTEMP-T2 MODBUS 16CH

#

SETTINGS ...

COMPORT = 'COMS8! # COM Port (for ModbusRTU)
IPAddr = XXX XXX XXX XXX # I[P ADDRESS (for ModbusTCP)
DevAddr = 1 # Modbus ID

DevChCnt = 8 # Channel Count

delay = 1 # Measurement Delay (s)

#

import time,sys

from datetime import datetime

from pymodbus.constants import Devicelnformation

from pymodbus.client.sync import ModbusSerialClient as ModbusClient
#from pymodbus.client.sync import ModbusTcpClient as ModbusClient
from modbuslib import RegisterService

from modbuslib import RegTypes

from modbuslib import MB_Devicelnfo

from modbuslib import FtRegMap

from modbuslib import getfDiv10

client = ModbusClient(method="rtu’, port=COMPORT, timeout=1, parity='E', baudrate=19200)
#client = ModbusClient(IPAddr.split(\r')[0], port=1312, retries=5, retry_on_empty=True)
try:
client.connect()
RegSrv = RegisterService(client, DevAddr)
except:
print "No connection possible!!"
print "Close Connection"
client.close()
sys.exit()

try:
print "*start at "+datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f")
print" Time ",
for ch in range(1,int(DevChCnt)+1):
print " Ch_"+str(ch),
print ""
print "-----—---- ,
for ch in range(1,int(DevChCnt)+1):
print "----—--- ,
print ""
while 1 ==
zeit = time.strftime(" %H:%M:%S")
masterRspTAvg = RegSrv.execute(RegTypes.Readlnp, FtRegMap.InpTempAvg, int(DevChCnt), -1)
print "{0:>10}" .format(zeit),
for ch in range(0,int(DevChCnt)):
print "{0:>8}C" .format(getflDiv10(masterRspTAvg.registers[ch])),
print ""
time.sleep(int(delay))
except StandardError, err:
print err

finally:
raw_input("...enter to exit")
print "Close Connection"
client.close()

Application Note AN129 9/9 98-MAPP-129, Rev A, 29-June-2021

