

FiSpec FBG

Sensor Systems

Programmer’s manual

Version 1.7

Firmware version covered in this handbook:

FiSpec firmware ver. 10.4

© 02/2023

FiSens GmbH Autorenkollektiv

38126 Braunschweig

Germany

Contents

1 Data transfer protocol of FiSpec devices... 1

1.1 Overview of available instructions .. 1

1.2 Communication between FiSpec and host computer ... 3

1.2.1 Basic communication parameters ... 3

1.2.2 Wireless LAN and Ethernet connected FiSpec devices ... 3

1.2.3 Multiplex operation of stacked FiSpec devices ... 4

1.2.4 Transmission of pixel intensities (spectrum) ... 5

1.2.5 Transmission of wavelength+intensity or Strain+Temperature 6

1.2.6 Transmission of wavelength list .. 7

1.2.7 Handling of floating point values .. 8

1.3 General command set ... 8

1.4 Configuration of Peak detection ... 10

1.5 Readout of present onboard settings ... 12

1.6 Onboard global drift correction .. 14

1.6.1 Calculating wavelengths of pixels .. 14

1.6.2 Calculation of drift corrected wavelengths ... 14

1.6.3 Drift correction commands ... 15

1.7 On board strain/temperature calculation ... 16

1.8 Setting mode and constants for onboard strain/temperature calculations 17

1.8.1 Constant TEK mode (mode 0) .. 18

1.8.2 Global cubic temperature interpolation (mode 1) .. 18

1.8.3 Channel specific error correction (mode 2) .. 19

1.9 Onboard Edge-FBG measurements ... 21

1.9.1 Principles of Edge-FBG measurements ... 21

1.9.2 Variables and channel sorting conventions .. 22

1.9.3 Setting up Edge FBG measurements ... 23

1.9.4 Onboard Edge measurement commands.. 24

1.10 Streaming modes, optional External UART ... 27

1.10.1 Basic UART communication parameters ... 27

1.10.2 Streaming mode .. 28

1.11 Autostart mode, and Saving settings to Flash memory .. 28

2 Program code examples .. 30

2.1 Examplary commands sequences for setting up onboard calculation.................................. 30

2.2 LabView program code .. 31

2.3 C program code ... 34

2.4 Python program code .. 37

2.4.1 Python code overview and libraries .. 37

2.4.2 Python file "main.py" .. 39

2.4.3 Python file "FiSpec_GUI.py" .. 46

3 Firmware changelog .. 49

1

1 Data transfer protocol of FiSpec devices

The communication with the spectrometer system bases on a serial protocol whose details are de-

scribed in the following chapter.

1.1 Overview of available instructions

General commands

?> Get system name

p?> Get several parameters

LED,x> Switches internal light source

WLL> Get wavelength of pixels list

m,x> Set averaging

ADCC,x> Switch adaptive dark frame compensation

ADBA,x,y,z> Automatic periodic dark frame update

iz,x> Set integration time

a> Globally start measurements

o> Globally stop measurements

s> Get latest spectrum

AO,x> Start auto-optimization of integration time / averages

Configuration of peak detection channels

KA,x> Set number of active channels

Ke,x,y,z> Set peak detection channel details

Pv,x> Switch follow peak function

PNg,x> Set follow peak limit

PeM,x> Set peak detection mode (obsolete)

P> Get latest peak positions/amplitudes

Readout of present onboard setting

KAa> Transmit channel number

PAa> Transmit number of pixels

KLa> Channel list: start wavelength

KLe> Channel list: end wavelength

KLWL0> Channel list: zero wavelength

KLT0> Channel list: zero temperature

KLTK> Channel list: temperature compensation

KLTyp> Channel list: FBG type

aRWL?> actual reference wavelengths

Max?> maximum amplitude

e?> Error code; get signal quality of every peak detection channel

Onboard global drift correction

RK,x> Switch reference correction

RTsv,x> Switch the use of internal temperature sensor

Rta,x> Set actual reference temperature

RSP,x,y> Set reference sensor parameters

RS2P,x,y> Set reference sensor No. 2 parameters

2

KS1R,x> Corr. slope single reference FBG

RSA,x> Number of reference sensors

AS_RK,x> Sets reference compensation state at device power up

On board strain/temperature calculation

OBB,x> Switch on board calculation

OBsaT0,x> Set same T0 value for all channels

OBseT0,x,y> Set T0 for a specific channel

OBsWL0,x,y> Set channel’s zero wavelength

OBsTyp,x,y> Set channel type (i.e. temperature/strain)

OBsTK,x> Set channel’s temperature compensation state

OBN,x> Set actual values as zero values

OBNe,f> Set actual values as zero values (single fiber)

Setting mode and variables for onboard strain/temperature calculations

OeK,x> Set optoelastic constant for strain measurements

TEKI,x> Set interpolation mode for temperature measurements

TeK,x> Set TEK for constant value case

KPTWLVs,x,y,z> Set global "T->V" temperature interpolation parameter

KPWLVTs,x,y,z> Set global "V->T" temperature interpolation parameter

KPTFTs,f,x> Set active fiber type for global temperature interpolation

KubParam?> Get parameters of global temperature interpolation

EKFPs,f,x,y,z> Set channel specific error compensation parameter

EKFParam? Get parameters of channel specific error compensation

KalID,w,x,y,z> Set user selectable calibration ID

KalID?> Get user selectable calibration ID

Setting mode and variables for onboard Edge-FBG calculations

EBs,x> Enable/Disable Edge-FBG calculation

EFPs,x,y,z,f> Set fiber parameters for Edge-calculations

EaKs,X1,X2,Y1,Y2> Set same Edge-FBG coordinates for all sensor planes

EXKs,f,x,X1,X2> Set single sensor plane Edge-FBG coordinates (X pair)

EYKs,f,x,Y1,Y2> Set single sensor plane Edge-FBG coordinates (Y pair)

EOBN,f> Zero edge sensors (straight sensor)

EOBRN,f> Zero edge sensors direction (coiled sensor)

EaPhi0N> Zero all 0

EKBs,x> Set half channel width for amplitude calculation

EEs,f,x,y> Set ellipsoid angle  for a single sensor plane

EaEs,x,f> Set same ellipsoid angle  for all sensor planes in one fiber

EUm> Measure background spectrum

EK?> Get all Edge-FBG coordinates

EE?> Get all ellipsoid angles 

EFP?> Get fiber parameters

E> Get latest edge-FBG measurement results (angle/radius)

3

streaming modes, optional ext. UART

extBdR,x> Set baudrate of optional UART connector

DauSe,x> Switch/set streaming mode

UARTse,x> Set UART transmission mode (Firmware <10.0)

MpxNr,x> Set multiplex number for non stackable devices

Autostart, saving settings to Flash memory

AuSt,x> Switch Autostart

speichern> Save settings to Flash (refer to chapter 1.11!)
Table 1 Table of available instructions.

Table 1 lists the serial commands available for the control of the spectrometers. These are described

in detail in the following sub chapters.

1.2 Communication between FiSpec and host computer

1.2.1 Basic communication parameters
The serial communication between spectrometers and host computer is accomplished via a FTDI USB

2.0 HS chip (VID:0403, PID:6015) with a baudrate of 3MBd. The FTDI chip itself supports many differ-

ent baudrates; however, the microcontroller UART uses a fixed one. To communicate, this parame-

ters shall be used:

Baudrate: 3,000,000 Bit/s

8 data bits, 1 stop bit, no termination character, no handshake

All numbers are sent and received as integers, with certain conversion factors determining the num-

ber of decimal places. In general, the factor for wavelengths is 10,000, and the temperature conver-

sion factor is 100. The details are explained below.

The instructions are sent as ASCII strings, using a ">" as only termination character. Beware that this

is important, as any additional termination characters like CR/LF will confuse the microcontroller. The

standard settings in some serial communication libraries do not work out of the box due to such be-

haviour; for example, a customer reported communication with his FiSpec worked when using jssc

library only after switching to a native interface in his Java environment.

When manually testing commands via a terminal program, it is recommended not to use programs

that add termination characters as a default (for example, "PuTTY" does not work). For example, the

freeware terminal program "HTerm" (Tobias Hammer, http://www.der-

hammer.info/pages/terminal.html) works well in this regard.

1.2.2 Wireless LAN and Ethernet connected FiSpec devices
There are extension boxes available that can be plugged into the external UART of FiSpec devices and

offer network access by providing an Ethernet port or wireless LAN (WLAN).

The extension boxes are using TCP/IP protocol, with either DHCP or fixed IP addresses and port num-

ber 8888.

Single wireless LAN/Ethernet devices

If a single device, for example an X100, is equipped by a wireless LAN or Ethernet extension, this ex-

tension box is essentially transparent for both transmitted and received data. So all commands de-

scribed in this handbook are to be used as described, with the exception of the ?> command: the

4

extension box will automatically append the string " WLAN" or " Ethernet" to the FiSpec's answer. So,

for example, instead of "FiSpec FBG X100\r\n" the string "FiSpec FBG X100 WLAN\r\n" will be re-

turned.

Stacked devices with converter box and ID-pins

Stacked devices with ID pins use an Ethernet interface box to connect to the network. This box is also

transparent towards transmitted and received data. However, as there can be several devices con-

nected at the same bus at the same time, two things have to be kept in mind:

- the unmodified ?> command will result in the interface box to deliver the string “FBG Interface

Converter”, regardless of further devices being plugged in or not.

- in order to address a certain device in the stack, the multiplex syntax described in chapter 1.2.3 has

to be used.

Furthermore, when sending a command with which no answer of the microcontroller is expected (for

example, a>), the interface box sends an automatic answer “ack” after 1ms.

1.2.3 Multiplex operation of stacked FiSpec devices
In multiplexed devices, the external UART is used for communication via a serial bus system (i.e.

RS485) in which all device's transmit lines (and receive lines, respectively) are connected in parallel.

So every FiSpec is listening to the same whole data stream of the host computer, and itself and all of

its fellow FiSpec devices will send on the same line. To avoid collisions, it is crucial to use the correct

commands.

There is no need to activate multiplex mode in FiSpecs. In stackable multiplex systems, each FiSpec

regularly (f=5Hz) scans its ID pins and therefore already knows its unique multiplex ID according to

the physical arragement of the devices.

To address a command to one certain FiSpec device, the associated multiplex ID followed by a verti-

cal bar has to be prefixed to it:

x|command[,number1,number2,...]>

x=Multiplex ID of FiSpec to address x=1, 2, ..., number of available FiSpec / x=999

command[,variable 1, variable 2, ...]=command with associated variables

If all FiSpec should execute the same command, x=999 has to be used. Beware that this case should

be used only with commands that don't generate answers (i.e. a>/ m,x>/...) as then data corrup-

tion will occur due to all devices sending at the same time with all of them switching to low imped-

ance state. Same is for the streaming mode; if this mode is enabled with stacked devices, all of them

will transmit at the same time corrupting each other’s signals.

For example, to request the spectrum from a specific FiSpec with ID=5:
5|s>

If there is no prefix at all, the FiSpec generally assumes the command is meant for itself and will start

working on it. So using "normal" commands in multiplex systems will result in the same results as

using a multiplex ID of x=999, including the above mentioned danger of data corruption when using

data generating commands.

If no ID pins are available in a device (e.g., FiSpec X100), it is possible to set a fixed Multiplex number.

It is assigned by the following command:
MpxNr,x>

x=Multiplex number of non-stackable FiSpec x=1, 2, ..., 65534

So when using unique Multiplex numbers, it is possible to connect several device's UART interfaces

in parallel, even without further electrical buffers, as the devices themselves set their I/O lines to

5

high impedance state shortly after transmitting. However, this feature is entirely experimental and

not officially supported.

1.2.4 Transmission of pixel intensities (spectrum)
When sending the s> instruction, the microcontroller answers by sending the intensities of the

spectrometer's pixels. The spectral information consists of an array of unsigned 16bit-integers, one

for every pixel. The numbers are transmitted as a String of hexadecimal numbers, with each uint16_t

as a high byte followed by its low byte. The Spectral array (array size: number of pixels) is terminated

by a four byte string: "Ende" resp. 0x45 0x6E 0x64 0x65.

The sequence is illustrated in Table 2 (left): In the first three 16 bit numbers, the pixel intensity in-

formation were exchanged by some real time information before transmission:

• First int16: on board sensor temperature(°C)*100. In this number, high/low byte are arranged as

described above. However, in this case they have to be treated as a signed 16 bit number.

• Second int16: currently calculated Refslope=slope*1,000,000 of the on board drift compensation.

• Third int16: currently calculated RefOffset=pixelshift*10,000 of the on board drift compensation.

• after that many uint16 numbers (unsigned!): intensity of the pixels.

If the system is a multi-fiber one, data is now transmitted for the other fibers as well (grey area in

Table 2). The system temperature in this case is always the same, as there is only one sensor per

system, but reference slope and offset are unique for the different fibers.

After all data is transmitted, the "Ende" string is transmitted.

 transmitted spectrum transmitted wavelength list

Fi
b

er
 0

Temp Bit 0…15 WL_00 Bit 16…31 WL_00 Bit 0…15

RefSlope_0 Bit 0…15 WL_01 Bit 16…31 WL_01 Bit 0…15

RefOffset_0 Bit 0…15 WL_02 Bit 16…31 WL_02 Bit 0…15

Int_03 Bit 0…15 WL_03 Bit 16…31 WL_03 Bit 0…15

Int_04 Bit 0…15 WL_04 Bit 16…32 WL_04 Bit 0…15

. .
 .

. .
 .

Int_0m Bit 0…15 WL_0m Bit 16…31 WL_0m Bit 0…15

Fi
b

er
 1

Temp Bit 0…15 WL_10 Bit 16…31 WL_10 Bit 0…15

RefSlope_1 Bit 0…15 WL_11 Bit 16…31 WL_11 Bit 0…15

RefOffset_1 Bit 0…15 WL_12 Bit 16…31 WL_12 Bit 0…15

Int_13 Bit 0…15 WL_13 Bit 16…32 WL_13 Bit 0…15

Int_14 Bit 0…15 WL_14 Bit 16…31 WL_14 Bit 0…15

. .
 .

. .
 .

Int_1n Bit 0…15 WL_1n Bit 16…31 WL_1n Bit 16…31

. .
 .

. .
 .

. .
 .

6

Fi
b

er
 3

Temp Bit 0…15 WL_30 Bit 16…31 WL_30 Bit 0…15

RefSlope_3 Bit 0…15 WL_31 Bit 16…31 WL_31 Bit 0…15

RefOffset_3 Bit 0…15 WL_32 Bit 16…31 WL_32 Bit 0…15

Int_33 Bit 0…15 WL_33 Bit 16…32 WL_33 Bit 0…15

Int_34 Bit 0…15 WL_34 Bit 16…31 WL_34 Bit 0…15
. .

 .

. .
 .

Int_3p Bit 0…15 WL_3p Bit 16…31 WL_3p Bit 0…15

 "En" "En" "de"

 "de"
Table 2 Data format for spectral data (s>, left) and wavelength list (WLL>, right).

Beware that although the pixel information is exchanged by other information, the wavelength scale

(WLL> instruction) starts at the first transmitted item (in this case, the temperature value), like

shown in Table 2 (right).

In single-fiber systems, no further information about the pixel numbers is needed. To assign the val-

ues correctly in multi-fiber systems, however, one has to gain information about how many pixels are

related to which fiber. This can be done by sending the PAa> command once, like described in

chapter 1.5.

1.2.5 Transmission of wavelength+intensity or Strain+Temperature
When using the P> instruction, depending on the on board calculating mode either the intensities

and wavelength positions of the FBG peaks or the on board calculated strain and temperature values

are sent to the host computer.

Fi
b

er
 0

WL_00 Bit 16…31 WL_00 Bit 0…15

Int_00 Bit 16…31 Int_00 Bit 0…15

WL_01 Bit 16…31 WL_01 Bit 0…15

Int_01 Bit 16…31 Int_01 Bit 0…15

. .
 .

WL_0m Bit 16…31 WL_0m Bit 0…15

Int_0m Bit 16…31 Int_0m Bit 0…15

Temp Bit 0…15 0 (Empty)

RefSlope_0 Bit 0…15 RefOffset_0 Bit 0…15

Fi
b

er
 1

WL_10 Bit 16…31 WL_10 Bit 0…15

Int_10 Bit 16…31 Int_10 Bit 0…15

WL_11 Bit 16…31 WL_11 Bit 0…15

Int_11 Bit 16…31 Int_11 Bit 0…15

. .
 .

WL_1n Bit 16…31 WL_1n Bit 0…15

Int_1n Bit 16…31 Int_1n Bit 0…15

7

Temp Bit 0…15 0 (Empty)

RefSlope_1 Bit 0…15 RefOffset_1 Bit 0…15

. .
 .

. .
 .

Fi
b

er
 3

WL_30 Bit 16…31 WL_30 Bit 0…15

Int_30 Bit 16…31 Int_30 Bit 0…15

WL_31 Bit 16…31 WL_31 Bit 0…15

Int_31 Bit 16…31 Int_31 Bit 0…15

. .
 .

WL_3p Bit 16…31 WL_3p Bit 0…15

Int_3p Bit 16…31 Int_3p Bit 0…15

Temp Bit 0…15 0 (Empty)

RefSlope_3 Bit 0…15 RefOffset_3 Bit 0…15

 "En" "de"

Table 3 Data format in case of onboard peak detection.

The data is also transmitted as a hexadecimal string array. Starting with channel 0, the wave-

length(nm)*10,000 is transmitted as an int32_t number, followed by the amplitude*10,000 (also a

int32_t number). The other channels are transmitted likewise successively. The 32 bit numbers all

start with the highest byte down to the lowest.

When the onboard calculation case is enabled (see chapter 1.7), instead of wavelength and ampli-

tude, strain(µm/m)*10,000 and temperature(°C)*100 are transmitted in the same way.

After the peak wavelength/amplitude or strain/temperature information, there is another "channel"

transmitted consisting of two 32 bit numbers featuring the same format (high byte down to low

byte).

• first int16: temperature(°C)*100 of the on board temperature sensor

• second int16: empty (zero)

• third int16: current reference compensation value; RefSlope= slope*1,000,000

• fourth int16: current reference compensation value; RefOffset= offset(nm)*10,000

In case of a multi-fiber system, the measured data of the other fibers is transmitted likewise (see

Table 3, grey section). Please use the KAa> command (see chapter 1.5) once before to know how

many channels there are per fiber.

The complete array size therefore is (number_of_channels+1)*number_of_fibers and like in the

spectral case it is terminated by a four byte string: "Ende" resp. "0x45 6E 64 65".

1.2.6 Transmission of wavelength list
When answering the WLL> instruction, the microcontroller sends wavelength(nm)*10,000 for each

pixel successively. This is done like in the "peak detection" case above; each number is a signed 32 bit

integer starting at the highest byte. Termination string is also "Ende". For details, see Table 2 (right).

In multi-fiber systems, the wavelengths of all fibers are transmitted successively. It is therefore

needed to send the PAa> command once, like described in chapter 1.5, to be able to relate the

wavelength information correctly.

Alternatively, the pixel’s wavelengths can be calculated as mentioned in chapter 1.6.1.

8

1.2.7 Handling of floating point values
Most commands used in FiSpec devices operate with integer values, using certain factors to achieve

sufficient decimal places. However, this method reaches its limitations when using numbers who may

differ in several orders of magnitude, like is the case with the cubic polynomial temperature interpo-

lation (see chapter 1.8). So in order to transfer the interpolation parameters TV_0...TV_3,

VT_0...TV_3 and TC_0...TC_3 mentioned in that chapter, their 32 bit single precision floating point

values have to be type casted to 32 bit integers and vice versa. The transfer in general follows the

same rules like the integer values; so the same byte/word-swapping due to the little-endianess of the

microcontroller has to be done. The floating point values follow the IEEE 754 standard.

As the commands are sent in plain text format, before sending a floating point value it just has to be

casted to an int32_t value. In Fig. 9, an example for LabView is shown.

When receiving values, similar to how in chapter 1.2.4 described the data has to be casted to

uint16_t numbers first, byte and word swapped due to little endianess, combined to 32bit values and

then casted to single precision floating point values. As an example, Fig. 10 shows how to get the TV

and VT parameters via the the KubParam?> command.

1.3 General command set
This chapter contains the basic commands for operating the spectrometer. For programming it is

recommended to first ask for system information (Pixel numbers, wavelength information and the

like) and set all important settings (integration time, averaging, …). Sending the a> command starts

measurements. The system continuously measures spectra and calculates positions and intensities in

the pre-set peak channels. Each time when the s> or P> command is sent, the microcontroller

sends the desired information of the latest elapsed measurement. If there is no new data since the

last request, the answer is delayed accordingly until new data is available.

?> "?"

Asks for the system name.

Answer: String with Terminator \r\n, i.e. „FiSpec FBG X100 \r\n“

p?> "Parameter? / parameters?"

Requests the system’s parameters.

Answer: String with terminator \r\n. The string contains variable names (between "#" and "_") and

the corresponding integer values (between "_" and the next "#"). The following variables are trans-

mitted:

#Version_x x=Firmware version*10

#Pixel_x x=Number of measured pixels

#Mindestintegrationszeit_x x=Minimum integration time (µs)

#Seriennummer_x x=Serial number

#A1/A2/A3_x internal pixel parameters (see chapter 1.6)

#B1/B2/B3_x internal wavelength parameters (see chapter 1.6)

#Kalibrierungstemperatur_x x=100*system temperature during factory wavelength calibration

#Kanalanzahl_x number of currently active peak detection channels

#IntReferenz_x x=0/1/2; none, one or two internal reference FBG available

#WL0Ref_x x=10,000*wavelength(nm) of internal reference FBG sensor @ T0

#KanalbreiteRef_x x=10,000*width(nm) of reference FBG sensor peak detection channel

#T0Ref_x x=100*T0 calibration temperature of reference FBG sensor

#tInt_x x=integration time (µs) at startup

#Mittelungen_x x=spectrum averages at startup

9

#Dauersenden_x x=0/1/2; state of streaming mode at startup

#Autostart_x x=0/1; Autostart at startup dis-/enabled

#OBBerechnen_x x=0/1; onboard strain/temp. calculation dis-/enabled at startup

#UARTModus_999 obsolete; for compatibility reasons with older firmware

#extBaudrate_x x=Baudrate of optional external UART connector at startup

#Schreibzugriffe_x x=number of write processes to the flash memory. Standard value: 1

#Faseranzahl_x x=number of fibers in multi-fiber systems

#MultiplexNr_x x=Multiplex ID in stacks of multiplexed systems

Intern_x x=internally readout pixels

#St_x x= wavelength compensation slope

#TEK_x x=thermoelastic constant in the constant value interpolation case

#TEKRef_x x=value used for internal reference FBG wavelength compensation

#OEK_x x=optoelastic constant used for onboard strain measurements

#TEKinterpol_x x=0/1/2; temperature interpolation mode

 (refer to TEKI,x> command in chapter 1.8)

#RK_x x=0/1; reference compensation dis-/enabled

#AStartRK_x x=0/1; reference compensation dis-/enabled state at startup

#PeakErkM_x x=0/1; peak detection mode (center of gravity, derivative)

#EdgeKB_x x=0...8; half channel width for Edge-FBG calculations

Table 4 Transmitted parameter string variables.

In case of a multi-fiber system (#Faseranzahl>1) some variables (A, B, Kanalanzahl, WL0Ref, ...) are

modified to indicate their respective fiber. Fiber numbers range from 0...3, and the variable names

are exended by adding "_" and the fiber number. For example, instead of "#A1_901" it is then

"#A1_0_901".

LED,x> "LED schalten / switch LED"

Switches the internal light source of the interrogator systems on (x=1) or off (x=0).

WLL> "Wellenlängenliste / wave length list"

Requests a list of wavelengths of each Pixel.

Answer: number_of_pixels*32 bit, ends with „Ende“ (see chapter 1.2.6 for details).

Alternatively, the pixel’s wavelengths can be calculated as described in chapter 1.6.1.

m,x> "Mittelungen / averaging"

x=1…1000

Sets on board averaging (x=1=>no averaging). In this mode, the full internal speed of the system can

be used to get better measurement quality, even if data transmission is slower.

ADCC,x> "Adaptiver Dunkelbildabzug / Adaptive Dark Current Compensation"

x=1/0

Enables (x=1) or disables (x=0) the adaptive onboard dark frame compensation. This function uses

either the darkframe already stored in factory, or, if activated by ADBA,1,y,z> command, a dark-

frame automatically updated in between measurements.

ADBA,x,y,z> "Automatische Dunkelbildaktualisierung / Automatic periodic dark frame

update"

x=1/0

y=update time(s)*100 between dark frame measurements y=2...4000

10

z=darkframe low pass filter z=1...100

Enables (x=1) or disables (x=0) the automatical periodic darkframe update. In case of x=1, the time

between updates can be chosen by y. Beware that dark frame compensation (command ADCC,x>)

has to be active for this command to show any effect.

iz,x> "Integrationszeit / integration time"

x=integration time(µs) x=30…65,000,000

Stops measurement if already running, sets integration time and returns to preliminary state.

a> "St_a_rten / start measurements"

Starts internal measurements. Has to be called once before requesting spectra or peaks. It is recom-

mended to first set all other parameters before starting measurements.

o> "St_o_ppen / stop measurements"

Stops internal measurements. May be called after finishing measurements, but is not mandatory

(spectrometer doesn’t enter idle mode or the like).

s> "Spektrum ausgeben / get spectrum"

Requests last measured spectrum.

Answer: pixel amplitudes; output format is described in chapter 1.2.

AO,x> "Auto-Optimierung/ Auto-optimization"

x=Target frequency (Hz) x=1...5000

Requests an auto-optimization of integration time and averages to achieve a certain target frequency
according to the currently connected sensors's signal amplitude. The algorithm tries to optimize the
maximum signal amplitude while still regaining some headroom, and further optimizes the averages
to reach the desired frequency to get the best signal quality possible.
Optimization bases on the transfer rate of the USB connection and the number of channels to be
transferred; the transfer of whole spectra will be slower.
Answer: array of three 32bit numbers, followed by "Ende". The three numbers contain:

1. new integration time (µs) / 2. new averages / 3. error code.

Error code:

 0 = target frequency achieved (as good as technically feasible; limitations due to USB

bandwidth possible)

 1 = target frequency achieved (as good as technically possible), but amplitude lower than the

amplitude optimization target range (although still as high as possible)

 2 = error! Algorithm is not converging (=> integration time/averages remain like before)

 3 = target frequency out of range (x<1 or x>5000Hz)

1.4 Configuration of Peak detection
While the spectrometer is active, all active peak search channels are evaluated each time a spectrum

has been measured. Therefore it is possible to ask for peak information instead of a whole spectrum

at any time after having set channel number and channel boundaries. Beware that setting channel

boundaries does not automatically activate this channels; only the first x channels (set by KA,x>)

are calculated and transmitted.

KA,x[,f]> "Kanal-Anzahl / number of channels"

x=1…32 (normal peak detection channels)

11

f=fiber number (optional, for multi-fiber system) f=0...3

From now on, the set number of channels will be measured and transferred when requested. Pre-

defined channels are already present on board, so choosing more channels than having defined be-

fore does no harm but may result in unexpected Peak amplitudes/wavelengths.

Ke,x,y,z[,f]> "Kanal einstellen / set channel"

x=peak detection channel number x=0…31(232)

y= s(nm) *10,000 x=999/1000: internal reference channel(s)

z= e(nm)*10,000

f=fiber number (optional, for multi-fiber system) f=0...3

Defining the range of a single peak detection channel at a time, starting at a wavelength s until e.

Beware: if the desired peak detection channel is wider than 200 pixels, this command will be reject-

ed.

With this command it is also possible to redefine the reference sensor channel to use an external

sensor. In this case, channel numbers of 999 (first sensor) and 1000 (second sensor, if any) have to be

used. Beware that in case of reference channel widths of <0.1nm no reference compensation will be

applied.

Pv,x> "Peaks verfolgen / follow peaks"

x= 1/0

Switches peak following on (x=1) or off (x=0) in case of onboard peak detection. The microcontroller

itself shifts the peak detection channels according to the detected wavelength shift of the FBGs. The

original channel positions are saved onboard, so when disabling peak following, the original state is

being recovered.

PNg,x> "Peaknachführgrenze / follow peak limit"

x= (0.01…0.49)*100

In case of activated onboard peak following, this value determines the maximum peak correction

allowed per measurement, where x=1…49 equals values of 1…49% of the actual channel width. If the

calculated peak channel correction is greater than this range, the measured value is decided to be an

error and therefore the peak detection channel is not changed in this case.

PeM,x> "Peakerkennungsmodus / peak detection mode" (obsolete since v10.3)

x= 1/0

Switches between the modes of onboard peak detection. By default, peaks are detected by deter-

mining the center of gravity of each peak with a detection limit of 20% (x=0). The mode can be

changed to an extreme value determination using the first derivative (x=1) for firmware versions

<10.3.

P> "Peaks ausgeben / get peaks"

Requests last measured peaks (position/amplitude or strain/temperature); equivalent to the s>-

command.

Answer: detected position and amplitude (or strain/temperature with enabled on board calculation,

see chapter 1.7) of the active peak channels. One additional "channel" consists of on-board sensor

temperature and WL compensation; see chapter 1.2.5 for details.

12

1.5 Readout of present onboard settings
If peak detection channels different to the delivery standard values were saved in the EEPROM, it can

be useful to know details. In this chapter, such commands are described. In general, the answer to

this commands is an array of numbers. These are transmitted in the same way as described in chap-

ter 1.2.6: they consist of int32_t numbers (exception with uint16_t numbers: KAa> and PAa> com-

mands). In case of a multi-fiber system, the information for fiber 0, 1, 2, ... follows successively. After

all values are sent, they are followed by "Ende" as terminator.

For transmission over UART, UART mode 4 is necessary.

Please bear in mind that the internal reference FBG channels are not covered by this commands if

not explicitely stated so. If you need information about these, you may get it by interpreting the in-

formation string following the p?> command (see chapter 1.3).

KAa> "Kanalanzahl ausgeben" / "transmit number of channels"

Answer: One (or, in multi-fiber systems, as many as fibers exist) number representing the number of

active channels (set by the KA,x[,f]> command before). Numbers are in uint16_t format.

PAa> "Pixelanzahl ausgeben" / "transmit number of pixels"

Answer: One (or, in multi-fiber systems, as many as fibers exist) number representing the number of

transmitted pixels when using the s> command. This command is mandatory in multi-fiber systems,

as it is needed to assign the answer of the s> and WLL> command to the single fibers. Numbers are

in uint16_t format.

KLa> "Kanalliste: Anfangswellenlänge / channel list: start wavelength"

Answer: Formatted like described in the WLL> command (see chapter 1.2.6), the transmitted data

consists of an array of wavelengths*10,000, representing the start wavelengths of the presently ac-

tive peak detection channels. There are as many of them as stated in the KAa> command.

KLe> "Kanalliste: Endwellenlänge / channel list: end wavelength"

Answer: Formatted like described in the WLL> command (see chapter 1.2.6), the transmitted data

consists of an array of wavelengths*10,000, representing the end wavelengths of the presently active

peak detection channels. There are as many of them as stated in the KAa> command.

KLWL0> "Kanalliste: Nullwellenlänge / channel list: zero wavelength"

Answer: Formatted like described in the WLL> command (see chapter 1.2.6), the transmitted data

consists of an array of wavelengths*10,000, representing the zero wavelengths of the presently ac-

tive peak detection channels. There are as many of them as stated in the KAa> command.

KLT0> "Kanalliste: Nulltemperatur / channel list: zero temperature"

Answer: Formatted like described in the WLL> command (see chapter 1.2.6; also int32_t numbers

instead of the usual temperature format int16_t for the sake of similar handling of all KL...>

commands), the transmitted data consists of an array of wavelengths*100, representing the zero

temperature of the presently active peak detection channels. There are as many of them as stated in

the KAa> command.

KLTK> "Kanalliste: Temperaturkompensation / channel list: temperature compensation"

Answer: Formatted like described in the WLL> command (see chapter 1.2.6), the transmitted data

consists of an array of numbers, representing if the associated FBG is temperature compensated

(number=1) by the temperature value of the FBG listed one position before (see explanations for

13

commands OBsTyp,x,y,[f]> and OBsTK,x,y[,f]> in chapter 1.7) or not (number=0). There

are as many i32_t numbers as stated in the KAa> command.

KLTyp> "Kanalliste: FBG-Typ / channel list: FBG type"

Answer: Formatted like described in the WLL> command (see chapter 1.2.6), the transmitted data

consists of an array of numbers, representing if the associated FBG is declared to be a mechanically

decoupled temperature FBG (number=1) or a strain FBG (number=0). There are as many i32_t num-

bers as stated in the KAa> command.

aRWL?> "aktuelle Referenzwellenlängen?" / "actual reference wavelengths?"

For informational purposes; it may be useful to know the presently internally measured reference

FBG wavelengths.

Answer: Array of Reference WL 1 and Reference WL 2 (regardless of if a system may have only one

Reference FBG per fiber), as many times as fibers are in the system, followed be "Ende" in the very

end. All numbers are int32_t.

Max?> "maximale Intensität?" / "maximum amplitude?"

If the FiSpec is used in peak detection mode only without transmitting whole spectra, this function

may be useful to check how much signal headroom is left to avoid overexposure. The microcontroller

answers with an array of as much uint16_t values as fibers (in a multi-fiber system; else one single

value) exist, followed by "Ende", as such being of the same format as the answer to the s> com-

mand. This values represent the hardware ADC value of the most intensely illuminated pixel in each

fiber's respective CMOS sensor sector (maximum value: 65535), irrespective of any background sub-

traction.

e?> "Fehlercode?" / "Error code?"

In order to get an easily interpretable information about insufficient signal quality or fiber breakage,

this command delivers the status of every possible FBG peak detection channel (i.e. four fibers, each

with a maximum of 32 peak detection channels), regardless if this full number of channels is set or

not or less than four fiber ports physically exist. The threshold used to differentiate between "good"

and "bad" signal qualities is the same like used in the "follow peak" mode. So if the signal to back-

ground ratio is too weak (varying also according to the number of averages set) the error bits of the

according peak detection channels will be set and the channel borders will not follow the measured

peak wavelength.

Additionally, if a measured peak amplitude is >63,000, the error bit of this FBG channel is also set, as

in this case signal clipping is highly likely.

The answer consists of six 32 bit numbers, followed by "Ende".

The respective 32 bits of the first four 32 bit numbers represent the FBG channels, with 1=bad signal,

and 0=good signal. Channels not in use are set as "0".

In the fifth 32 bit number, each byte represents one of the four fiber ports, while the first four bits of

each byte indicate four different error codes:

- Bit 0: S/N ratio

- Bit 1: over exposure

- Bit 2: peak following

- Bit 3: reference FBG error

These bits will be set as soon as at least one of the peak detection channels of this fiber port exhibits

the respective error.

The sixth 32 bit number is for future use.

14

Beware that there may be a signal level warning even if the FBG peaks are still visible. In this case,

the measured value may be still meaningful, but will be noisier and more unreliablely than normal.

Fig. 8 shows a simple LabView implementation of this command.

1.6 Onboard global drift correction

1.6.1 Calculating wavelengths of pixels
The easiest way to derive the (uncompensated) wavelength to each pixel ist to use the WLL> com-

mand (see chapter 1.2.6). Alternatively it is also possible to calculate the wavelengths out of the A

and B values derived by the p?> command :

Keep in mind that the first transmitted pixel of a fiber port does not necessarily start at the physical

pixel number 1 ; it can be located anywhere on the sensor. A certain fiber port’s start pixel equals the

related physical pixel number A2 ; all in all the fiber port features a number of A1 pixels.

The wavelength of each pixel is calculated like follows:

 (P) = (B10.007²P²+ B20.007P+ B3)

with P=A2+i

and i=0,1,2,…,(A1-1)

 (P)=wavelength of a certain physical pixel, calculated from A-values

P=physical Pixel number

A1/A2/A3= internal pixel parameters

B1/B2/B3= internal wavelength parameters

1.6.2 Calculation of drift corrected wavelengths
An automatic global correction of the spectrometer wavelength according to one or two dedicated

FBGs ("Drift compensation") is possible. When transmitting complete spectra (s> instruction) with

activated on board drift correction, these spectra contain the measured wavelength compensation

information (slope and offset; "second/third int16_t " as described in chapter 1.2.5).

It is possible to ignore the reference FBG that has been mounted inside the FiSpec devices and to use

two external temperature stabilized FBG sensors instead to further optimize the system stability. In

this case, the peak detection channels are established by the Ke,x,y,z[,f]> command (see

chapter 1.4), the internal temperature sensor has to be disabled (command RTsv,x>), and the as-

sociated external temperature has to be set (command RTa,x>).

If spectra are measured by the s> command, the wavelength of the spectrum has to be shifted

globally on the host computer by calculating the compensated x-axis values out of the actual

slope/offset values and the uncompensated wavelength values once derived by the WLL> command

(or calculated according to chapter 1.6.1) every time a new whole spectrum arrives.

In case of onboard peak detection, the transmitted peak wavelength information (P> instruction) is

already corrected. The peak array also includes the drift compensation values for informational pur-

poses, although in this case they are not needed for further calculations.

The wavelength of each pixel is calculated like follows:

corr =  + slope*(-ref_0) + offset

 corr=compensation corrected wavelength of the pixel

=wavelength of the pixel according to the WLL> command array

ref_0=zero wavelength of the reference FBG

slope/offset: compensation values derived from microcontroller

15

1.6.3 Drift correction commands
For using onboard global drift correction, the following commands are used:

RK,x> "Referenzkorrektur / enable reference correction"

x=1/0

Enables (x=1) or disables (x=0) the onboard drift correction

RTsv,x> "Referenztemperatursensor verwenden / use reference temperature sensor"

x=1/0

If an internal temperature sensor is present and the reference FBG is thermally tightly coupled to it,

the temperature information may be used for a seperate temperature compensation of the refer-

ence FBG to further enhance the compensation. This command enables (x=1) or disables (x=0) the

use of of the internal temperature sensor for this purpose.

RTa,x> "Referenztemperatur aktuell / set actual reference temperature"

x=T(°C)*100 x=-5000…20000 (i.e. -50…200°C)

If an internal temperature sensor is not used, this command tells the system about the actual tem-

perature T of the reference FBG sensor.

RSP,x,y[,f]> "Referenzsensorparameter / reference sensor parameters"

x=Wavelength (nm)*10,000 x=3,500,000…20,000,000

y=corresponding temperature T(°C)*100 y=-5000…20,000

f=fiber number (optional, for multi-fiber system) f=0...3

Sets the calibration parameters of the reference FBG sensor, i.e. the known wavelength  at a known

temperature T.

RS2P,x,y[,f]> "Referenzsensor 2-Parameter / reference sensor No. 2 parameters"

Like RSP,x,y[,f]>; sets values of an optional second temperature reference sensor.

KS1R,x[,f]> "Korrektursteigung einzelnes Referenzgitter" / "corr. slope single reference FBG"

x=slope*1,000,000

f=fiber number (optional, for multi-fiber system) f=0...3

In case of only one reference FBG, the wavelength offset is determined automatically by the micro-

controller, whereas the slope value can be set by the user with this command.

RSA, x> "Referenzsensoranzahl" / "number of reference sensors"

x=number of (external) reference FBG sensors x=1/2

In case of external reference sensors this command determines if one or two of them should be

used.

AS_RK, x> "Autostart-Referenzkompensation" / "autostart reference compensation"

x=1/0

This variable determines if the reference compensation is switched on at device power up (x=1) or

not (x=0). It can be saved to flash memory by the speichern> command.

16

1.7 On board strain/temperature calculation
It is possible to let the microcontroller do the calculations for strain and temperature measurements,

thus eliminating the need for calculating this values externally. Beware, however, that this calcula-

tions base on the on board calculated peak values, so that the results are a bit noisier than the ones

derived by mathematically more complex Gauß fits like e.g. the ones used in the BraggSens software.

Each FBG and temperature compensation FBG to be detected needs its own detection channel de-

fined by its left and right border like already described in the Ke,x,y,z> command. Apart from

these, in onboard calculation mode each channel gets a series of additional parameters by com-

mands described below.

In general, if an FBG channel (channel number i) is set as being a temperature compensated strain

FBG, the FBG in the channel directly underneath (channel number i-1) will be used by the algorithm

as the associated temperature compensation FBG. So the FBG channels have to be arranged with this

in mind.

OBB,x> "OnBoard-Berechnung / Switch On board calculation "

x=1/0

Globally enables (x=1) or disables (x=0) the onboard strain and temperature calculation. When ena-

bled, the P> command will return an array of Strain/Temperature values instead of Peak Wave-

length/Amplitude values. As a standard setting at startup on board calculation is off, as long as not

saved to flash memory by the speichern> command otherwise.

OBsaT0,x[,f]> "onboard: setze alle T0 / set all T0 values at once"

x=zero Temperature T0(°C)*100

f=fiber number (optional, for multi-fiber system) f=0...3

Set same T0 value for all channels. This command can be used when assuming that all FBGs involved

are at the same (room-) temperature when zeroing.

OBseT0,x,y[,f]> "onboard: setze einzelnes T0 / set T0 for a specific channel"

x=peak detection channel number x=0…31

y=zero temperature T0(°C)*100

f=fiber number (optional, for multi-fiber system) f=0...3

If FBGs (and their respective optional temperature compensation FBGs) are mounted at places with

different Temperatures at zeroing time, their zero temperatures can be set individually with this

command.

OBsWL0,x,y[,f]> "onboard: setze Nullwellenlänge / set zero wavelength for a specific channel"

x=peak detection channel number x=0…31

y=zero wavelength(nm)*10,000

f=fiber number (optional, for multi-fiber system) f=0...3

Set zero wavelength (𝜆𝑆,0 or 𝜆𝜗,0) of a specific channel when sending the OBN> command is not de-

sired, i.e. when setting zero wavelengths according to measurements in the past regardless of actual

value.

OBsTyp,x,y,[f]> "onboard: setze Gittertyp / set FBG type"

x=peak detection channel number x=0…31

y=FBG type y=0/1

f=fiber number (optional, for multi-fiber system) f=0...3

Set FBG type in channel x as temperature (y=1) or strain (y=0) FBG.

17

OBsTK,x,y[,f]> "onboard: setze Temperaturkompensation / set temperature compensation "

x=peak detection channel number x=0…31

y=temperature compensation state y=1/0

f=fiber number (optional, for multi-fiber system) f=0...3

Assigns if the strain FBG in channel x shall be temperature compensated (y=1) by another one (per

definition the FBG in the channel with number x-1) or not (y=0). Temperature FBGs naturally have no

further temperature compensation FBGs themselves.

When all settings are set, the onboard calculation can be switched on with the OBB,x> command.

Furthermore, to get sensible values it is necessary to "zero" the system one time in strainless state

like pressing the "zero Temp/strain" button in the BraggSens software. This is accomplished by the

OBN> command:

OBN> "onboard-Nullen / Set actual values as zero values"

Sets all current wavelengths of all fibers (in a multi-fiber system) as zero wavelengths.

OBNe,f> "onboard-Nullen einzeln/ Set actual values as zero values (single fiber)"

f=fiber number (for multi-fiber system) f=0...3

Sets all current wavelengths of a single fiber (in multi-fiber systems) as zero wavelengths.

1.8 Setting mode and constants for onboard strain/temperature calculations
When being used out of the box, predefined constant values for both optoelastic constants ("OEK",

strain measurements) and thermoelastic constants ("TEK", temperature measurements) are used. In

general, these constants deliver good results.

For strain measurements, the OEK can be changed:

OeK,x> "optoelastische Konstante" / "optoelastic constant"

x=OEK*1000 x=0...50,000 (i.e. OEK=0...50.000)

Sets the optoelastic constant for onboard strain measurements.

As the material of the glass fibers changes its optical characteristics over a broader temperature

range and furthermore different glass fibers differ slightly from each other, for temperature meas-

urements sometimes it is advisable to exchange the thermoelastic constant (TEK) by polynomial ap-

proximations to optimize accuracy. Starting from firmware v. 9.5 on, there are three different tem-

perature calculations possible:

- mode "0": constant TEK (one single constant for all measurements)

- mode "1": global third order polynomial temperature interpolation with one set (up to four

different sets, e.g. for different fiber types, can be saved in flash memory) of coefficients

- mode "2": peak detection channel specific third order polynomial temperature error correc-

tion. The temperatures calculated out of the chosen global polynomial parameter set are

peak detection channel specifically corrected each by a specific cubic polynomial error func-

tion. This can be used for pairing specific sensor fibers to a specific device by calibrating both

of them together, enabling the best possible accuracy.

This three different methods are described in the following sections.

The interpolation mode can be chosen by using the TEKI,x> command:

18

TEKI, x> "TEK-Interpolation" / "thermoelastic constant interpolation"

x=0/1/2

Sets the above mentioned interpolation mode. The interpolation state will be saved to EEPROM

when using the speichern> command.

1.8.1 Constant TEK mode (mode 0)
For temperature measurements in interpolation mode 0, the TEK can be set:

TeK, x> "optoelastische Konstante" / "optoelastic constant"

x=TEK*1E9 x=0...50,000 (i.e. TEK=0...50.000*106)

Sets the thermoelastic constant for onboard temperature measurements.

All further temperature measurements of all FBG channels will then be based on this value.

1.8.2 Global cubic temperature interpolation (mode 1)
The cubic polynomial interpolation bases on calibration measurements of wavelength shifts relative

to the sensor temperature. For determining the coefficients experimentally, the following steps have

to be carried out:

• increase the sensor temperature T in appropriate steps and afterwards measure wavelengths

of all FBGs.

• calculate the change in wavelength value for each temperature step and FBG channel:

V=(/0)-1

• for each FBG channel: plot a T- V diagram and the inverse V-T-diagram (with [T]=°C).

• fit polynoms (parameters VT_0...VT_3 and TV_0...TV_3) to this diagrams:

T = VT_0 + VT_1 * V + VT_2 * V² + VT_3 * V³

V = TV_0 + TV_1 * T + TV_2 * T² + TV_3 * T³

Fig. 1 Exemplary experimentally derived T-V and its inverse V-T diagram for 800nm single mode fiber with fitted polynoms.

In Fig. 1, such measurement data with fitted cubic functions is shown. As can be seen, in reality the

functions are not purely linear. The inverse function V-T allows for arbitrary zero temperatures dur-

ing later measurements.

It is possible to store four complete sets (one set consisting of four T-V coefficients K0...K3 and four V-

T coefficients C0…C3) of cubic coefficients in the microcontroller, thus enabling the user to freely

T = 6,5317E+09*V3

-2,7878E+07*V2

+1,6147E+05*V
-3,9724E+01

-40

-20

0

20

40

60

80

100

120

140

160

0 0,0005 0,001 0,0015

Te
m

p
er

at
u

re
 (

°C
)

V=(/0)-1

V = -1,0825E-11*T3

+7,6387E-09*T2

+6,7489E-06*T
+2,5618E-04

0

0,0002

0,0004

0,0006

0,0008

0,001

0,0012

0,0014

-40 10 60 110 160

V
=(


/

0)
-1

Temperature T (°C)

19

switch between four different fiber types. After that, it can be chosen which fiber type is connected

to which fiber port of the device.

Different to any other commands described in this handbook the polynomial values are not integers

multiplied by certain factors, but instead are transmitted as floating point values (casted to 32 bit

integers), as their orders of magnitude greatly vary. In chapter 1.2.7, the format of this values is de-

scribed in depth; example code for LabView is shown in Fig. 9 to Fig. 11.

To send the fitting parameters to the microcontroller, use the following commands:

KPTWLVs,x,y,z> "Kubischer Parameter: T->Wellenlängenverhältnis setzen" /

" Set global T->V temperature interpolation parameter"

x=fiber type (not fiber port number!) x=0...3

y=parameter number y=0...3 (e.g., 3 for parameter TV_3)

z=parameter value TV_y floating point value

Sets the global T->V temperature interpolation parameter TV_y.

KPWLVTs,x,y,z> "Kubischer Parameter: Wellenlängenverhältnis-> T setzen" /

" Set global V->T temperature interpolation parameter"

x=fiber type (not fiber port number!) x=0...3

y=parameter number y=0...3 (e.g., 3 for parameter VT_3)

z=parameter value VT_y floating point value

Sets the global V->T temperature interpolation parameter VT_y.

To choose which set of parameters to use with which fiber port (i.e. which fiber type is connected to

that port), the KPTFTs,f,x> command is used:

KPTFTs,f,x> " Kubischer Parameter: Fasertyp setzen"/ "Set fiber type for cubic

interpolation"

f=fiber port number f=0...3

x=fiber type x=0...3

Sets the fiber type connected at a certain fiber port to determine which set of parameters to be used

for global temperature interpolation, i.e. all for FBG channels defined at this fiber.

Finally, by sending the command TEKI,1> the global cubic interpolation is activated.

In order to readout the actual parameter values set in the device, the following command can be

used:

KubParam?> "Kubische Parameter?" / "cubic parameters?"

Get parameters of global temperature interpolation. Returns floating point numbers in a 32 bit array

(like in WLL> command, for example). At first, the parameter set number used in each fiber is trans-

mitted (each as a 16 bit integer number). Afterwards, the four stored parameter sets are transmitted,

each one containing four parameters TV_y immediately followed by the corresponding VT_y-value

(all numbers in 32 bit floating point format). The exact order can also be seen in the LabView source

code shown in Fig. 10.

1.8.3 Channel specific error correction (mode 2)
In the channel specific interpolation mode, the temperature of each FBG sensor is firstly calculated

according to the cubic temperature interpolation described in chapter 1.8.2, and this value is then

afterwards further corrected by another polynomial that has to be determined in advance for the

very exact combination of sensor array and spectrometer. This, for example, may be useful if certain

sensors are mounted differently or some other circumstances lead to different temperature re-

sponse of the sensors.

To determine the correction function, proceed as following:

20

• switch the spectrometer to mode 1 and set the appropriate fiber type

• set different sensors temperatures Tset and measure the related temperature Tmeas with the

spectrometer

• calculate the correction values C for each FBG channel:

C = Tset - Tmeas

• for each FBG channel: plot a C - Tmeas diagram (with [Tmeas]=°C and [C]=K).

• fit cubic polynoms (parameters TC_0...TC_3) to this diagrams:

C = TC_0 + TC_1 * Tmeas + TC_2 * Tmeas² + TC_3 * Tmeas³

This channel specific polynomial parameters can now be transmitted to the spectrometers and used

in mode 2 for temperature correction.

To set the parameters, use the following command:

EKFPs,f,x,y,z> "Einzelkanalfehlerpolynomparameter setzen" /

"Set channel specific error correction polynomial parameter"

f=fiber port number f=0...3

x=peak detection channel x=0...31

y=parameter number y=0...3 (e.g., 3 for parameter TV_3)

z=parameter value TC_y floating point value

Sets the channel specific Tmeas -> C temperature correction parameter TC_y.

To readout the currently used correction parameter values set in the device, use the following com-

mand:

EKFParam?> "Einzelkanalfehlerparameter?" / "parameters of channel specific correction?"

Get polynomial parameters of the channel specific error correction functions. Returns floating point

numbers in a 32 bit array (like in WLL> command, for example). The parameter sets of the currently

connected fiber ports (always four, regardless of how many fiber ports are physically available) are

transmitted successively, each one containing the four parameters TC_y (all numbers in 32 bit float-

ing point format) for 32 FBG channels in a row. The exact order can also be seen in the LabView

source code shown in Fig. 11.

Along with the single channel calibration a user specifiable calibration identification code may also be

set and saved to Flash memory. This ID consists of four 32bit numbers that can be utilized to taste.

KalID,w,x,y,z> "Kalibrierungs-ID setzen" / "Set calibration ID"

w, x, y, z = ID numbers w,x,y,z = int32 bit numbers

Sets four user selectable ID numbers.

KalID?> "Kalibrierungs-ID?" / "Calibration ID?"

Get user selectable calibration ID numbers.

Answer: array of four 32 bit numbers followed by "Ende".

21

1.9 Onboard Edge-FBG measurements

1.9.1 Principles of Edge-FBG measurements
Incorporating three or four FBGs at the same fiber position ("sensor plane") enables one to measure

the spatial curvature of the glass fiber at that point. By inscribing and measuring several of these

sensor planes at different positions along a glass fiber, it is possible to reconstruct the spatial position

of this fiber relative to it's surrounding environment.

Fig. 2 (left): Cross section of a single mode fiber core with four FBGs (blue ellipses) near the borders (coordinates X1, X2 and

Y1, Y2) and a slightly off-axis mode field (red) due to fiber curvature in -direction.

Fig. 3 (right): Cross section of a sensor plane of ellipsoidally arranged FBGs with an ellipsoid angle  different to .

In a straight fiber, the mode field of the broadband light guided through it is centered. However, if

the fiber is curved at a certain point, the mode field there is shifted slightly off-axis, along the normal

vector of the bending curve (the light is "trying to leave the fiber centrifugally " instead of following

the bending). Fig. 2 shows this scenario, with four FBGs written near the fiber core's borders (thus

the designation "Edge-FBG"), and the bending in -direction resulting in a mode field shift to the

upper left corner. In a straight fiber, both FBGs located at X1 and X2 coordinates would be irradiated

by the same amount of light intensity; same goes for Y1 and Y2. However, in the shown case with the

mode field being deflected, X1 receives more light than X2, and Y2 receives more light than Y1.

So by detecting the intensity ratios of IX1/IX2 and IY1/IY2, it is possible to measure both bending radius R

and bending direction angle .

The calculation principle is more exhaustively described in the paper of Waltermann et al.1 In that

paper a three FBG approach is discussed, which in principle is already sufficient for 3D mea-

surements. However, by using four FBGs like shown in Fig. 2, polarization effects and light source

intensity fluctuations can be further eliminated.

During FBG production it might happen that the two FBG pairs X1/X2 and Y1/Y2 are not arranged

perfectly rectangular to each other, like shown in Fig. 3. In this case, the angle  between x- and y-

axis is not exactly rectangular (=) anymore, as would be the case with perfect Edge-FBGs. To

overcome this issue, the onboard calculation can use experimentally derived angle values for com-

pensation. This angle can for example be determined for each sensor plane by measuring the phase

shift between both x and y portion of the measured R and  signal while rotating the fiber that is

bent by a constant radius (see, for example, also Fig. 11 and 12 at Waltermann et al.1).

1 C.Waltermann et al., Multiple off-axis fiber Bragg gratings for 3D shape sensing, Applied Optics Vol.

57, Issue 28, pp. 8125-8133 (2018).

22

1.9.2 Variables and channel sorting conventions

The variables used in this chapter are the following:

Coordinates and angles:

X1/X2/Y1/Y2[µm] Coordinates of the four FBGs in one sensor plane (see Fig. 2)

 [rad] ellipsoidal angle between x- and y-axis of a sensor plane (see Fig. 3)

R[mm] measurement result: measured bending radius at the sensor plane

[rad] measurement result: bending direction relative to the X/Y coordinate system

(see Fig. 2)

0[rad] angle  measured and internally saved during "define direction" process

Fiber parameters (one set of values per fiber port):

NA numerical aperture of the glass fiber

waveguide radius r [µm] mode field diameter of the glass fiber at about 850nm wavelength

Offset-to-Radius const. C Constant used to convert the measured mode field displacement into the

 fiber's bending radius

Sensor plane arrangement

A fixed number of four FBGs form a sensor plane. It does not matter if the FBG channels are defined

as temperature or strain, and as zeroing wavelengths also have no impact on the edge mea-

surements as well.

Per definition, this FBG channels and sensor planes are to be arranged in the FiSpec in a certain or-

der:

FBG channel nr. 0 1 2 3 4 5 7 6 8 ...

FBG at coordinate X10 X20 Y10 Y20 X10 X21 Y11 Y21 X13 ...

 Sensor plane 0 Sensor plane 1 ...

FiSens produced Edge-FBG sensor fibers already have the wavelengths fitting this scheme; so in this

case a simple automatic peak search will result in the correct order. However, when using other

layouts it is possible to change the wavelengths at any time, as long as the above mentioned channel

order is followed.

As the maximum number of FBG detection channels in a FiSpec device is 32 (channel 0...31), a maxi-

mum of eight sensor planes (0...7) is possible.

23

1.9.3 Setting up Edge FBG measurements
To measure the threedimensional shape of a glass fiber, the following sequence can be used:

On a new device, firstly the basic numbers have to be set:

• Set same edge-FBG coordinates for all sensor planes (command EaKs,X1,X2,Y1,Y2>).

To start, use the following numbers:

o X1=Y1=+2µm

o X2=Y2=-2µm

• Set fiber parameters for Edge-calculations (command EFPs,x,y,z,f>). These are to be

set for every single fiber port. For example:

o Fiber NA=0.1,

o waveguide radius r=2.9

o offset-to-radius-constant C=1700.

• If the device is newly updated from an older firmware, all 0 have to be zeroed (command

EaPhi0N>); else the E> command will not transmit any R and -numbers.

• For better results, the channel width can be set to +/-3 pixels (command EKBs,x>)

• If no details about the fibers are known, the ellipsoid angles at all fiber ports should be set to

=/2 (command EaEs,x,f>, each fiber port separately).

After this preparations, which only have to be done once, measurements can start:

• Enable onboard Edge-FBG calculations (command EBs,x>)

• Observe the spectra of the fiber ports and choose sensible integration time and averages.

This settings should be used in future, although slight differences in background caused by

different integration time are corrected for by the microcontroller.

• Disconnect all fibers from all fiber ports

• Get background (command EUm>); this command works for all fiber ports at the same time

• connect fibers again

Now, edge measurements can be started by constantly sending the E> command and reading out

the data. Zeroing is necessary before measurements and has to be done for every fiber separately:

• Lay the sensor fiber straight on an even surface and after some time send the "straight sen-

sor" command (command EOBN,f>) for each fiber. This saves the zero intensities of every

FBG.

• Coil the sensor fiber and send the "define direction" command (EOBRN,f>) for each fiber.

In this way, the zero angle 0 is saved for every sensor plane and all sensor planes are aligned

radially towards each other.

• After everything is set up, save the settings to EEPROM (command speichern>).

Now the edge measurements should work, even after a power cycle. So after powering the device

send the EBs,1> command once, and then start measuring by sending the E> command repeatedly

(occasionally zeroing may be needed depending on the circumstances).

24

1.9.4 Onboard Edge measurement commands
For using onboard Edge FBG measurements, the following commands are used:

EBs,x> "Edgeberechnungen schalten" / "Enable/Disable Edge-FBG calculations"

x=0/1

Enables (x=1) or disables (x=0) onboard edge calculations. In general, enabled Edge mode does not

affect normal measurements. However, for very fast measurement rates enabled Edge-mode may

result in delays, even if no E> commands are sent. If a high measurement rate is of concern while

doing Edge-FBG measurements, one may consider lowering the Edge-channel width (command

EKBS,x>).

EFPs,x,y,z,f> "Edge: Faserparameter setzen" / "Set Set fiber parameters for edge-

calculations"

x=fiber NA*1000 x>0

y=waveguide radius[µm]*1000 x>0

z=Offset-Radius-Parameter z>0

f=fiber port number f=0...3

Sets the fiber port specific fiber parameters.

EaKs,X1,X2,Y1,Y2> "Edge: alle Koordinaten setzen" / "Set same edge-FBG coordinates for

all sensor planes"

X1=X1[µm]*1000

X2= X2[µm]*1000

Y1= Y1[µm]*1000

Y2= Y2[µm]*1000

Sets the same set of coordinates (see Fig. 2) for all sensor planes of all fiber ports.

EXKs,f,x,X1,X2> "Edge: x- Koordinaten setzen " / " Set pair of x coordinates"

f=fiber port number f=0...3

x=sensor plane number x=0...7

X1=X1[µm]*1000

X2=X2[µm]*1000

Set Edge-FBG coordinates (X pair, see Fig. 2) for a single sensor plane of a specific fiber port.

EYKs,f,x,X1,X2> "Edge: y- Koordinaten setzen" / "Set pair of y coordinates"

f=fiber port number f=0...3

x=sensor plane number x=0...7

Y1=Y1[µm]*1000

Y2=Y2[µm]*1000

Set Edge-FBG coordinates (Y pair, see Fig. 2) for a single sensor plane of a specific fiber port.

EOBN,f> "Edge: onboard-Nullen" / "Zero edge sensors (straight sensor)"

f=fiber port number f=0...3

Set the actual FBG intensities of a specific fiber port as zero intensities for Edge calculations (to be

done with a straight sensor fiber).

25

EOBRN,f> "Edge: onboard-Richtung nullen" / "Zero edge sensors direction

(coiled sensor)"

f=fiber port number f=0...3

Set the actual sensor plane angles  of a specific fiber port as zero angles  for Edge calculations (to

be done with a coiled sensor fiber).

EaPhi0N> "Edge: alle  nullsetzen" / " Zero all "

Set all zero angles  to "0". Needed once after a firmware update from older versions with undefi-

ned values in EEPROM.

EKBs,x> "Edge: Kanalbreite setzen" / "Set channel width"

x=half channel width x=1...8

Set channel width (x points to the left and right, starting from the absolute maximum in the respec-

tive peak detection channel) for Edge amplitude calculation. The intensity maximum that is used for

the edge calculation then is calculated out of a curve fit comprising these data points. Beware that

setting this channel width to high values may result in delays for very fast measurement rates.

EEs,f,x,y> " Edge: Ellipsenwinkel  setzen" / "Set ellipsoid angle  "

f=fiber port number f=0...3

x=sensor plane number x=0...7

y=10,000 y=-210,000...+210,000

Set ellipsoid angle  for a single sensor plane of a specific fiber port.

EaEs,x,f> " Edge: alle Ellipsenwinkel setzen" / "Set all ellipsoid angles"

x=10,000 x=-210,000...+210,000

f=fiber port number f=0...3

Set the same ellipsoid angle  for all sensor planes of a specific fiber port.

EUm> " Edge: Untergrund messen" / " Measure background spectrum "

Measure background spectra of all fiber ports. Bear in mind to disconnect all fibers from the device

and set the desired integration time before. Curve fits of spectra derived in this way are subtracted

from the measured amplitudes before they are used in the onboard edge calculations.

EK?> " Edge: Koordinaten? " / " Get all Edge-FBG coordinates "

Answer: Formatted like described in the WLL> command (see chapter 1.2.5). The transmitted data

consists of an array of int32_t numbers, representing the coordinate[µm]*1000 of the sensor plane

FBGs.

The order is as following: X10/X20/Y10/Y20/ X11/X21/Y11/Y21/... X17/X27/Y17/Y27

For four-fiber port devices, coordinates of the FBGs at Fiber ports 1...3 are appended accordingly. At

last, the array is followed by "Ende".

26

EE?> " Edge: Ellipsenwinkel ? " / "Get all ellipsoid angles  "

Answer: Formatted like described in the WLL> command (see chapter 1.2.5). The transmitted data

consists of an array of int32_t numbers, representing the angle [rad]*10,000 between the sensor

plane's x-and y-axis (see Fig. 3).

The order is as following:  0/  1/... 7

For four-fiber port devices, the angles of the sensor planes at the other Fiber ports 1...3 are ap-

pended accordingly. At last, the array is followed by "Ende".

EFP?> " Edge: Faserparameter? " / "Get fiber parameters"

Answer: Formatted like described in the WLL> command (see chapter 1.2.5). The transmitted data

consists of an array of int32_t numbers, representing the numerical aperture NA*1000, waveguide

radius r[µm]*1000, and Offset-to-Radius-constant C*1000.

The order is as following: NA/r/C

For four-fiber port devices, the fiber parameters of the fibers connected to Fiber ports 1...3 are ap-

pended accordingly. At last, the array is followed by "Ende".

E> " Edge: Ergebnisse ausgeben" / "Get edge-FBG results"

Requests last measured Edge results (angle/radius); equivalent to the P>- command.

Answer: number of sensor planes N per fiber port (16bit integer numbers), followed by detected

edge-FBG measurement results (angle rad]10,000 and radius R[mm]*10,000, both being 32bit

numbers), error codes and "Ende". In Fig. 6, this is shown for the LabView programming language.

Order: N0/ N1/N2/N3/ R0/ / R1/ /... RN0/ N0 ... 6x32bit "Ende"

 Number of results R/ R/ Error code

Sensor planes fiber port 0 fiber ports 1...3

 (if applicable)

The error code is the same like derived by the e?> command (see chapter 1.5).

27

Connecting 5V levels at any pin except of Pin 1 will

destroy the microcontroller!

1.10 Streaming modes, optional External UART

1.10.1 Basic UART communication parameters
As an option, the FiSpec interrogators may be equipped with an external UART connector. In princi-

ple, the microcontroller listens for the whole command set on both USB and external UART. Also, the

answers will be sent simultaneously to both ones with exactly the same protocol, with the external

UART being able to use different Baudrates, whereas the USB FTDI chip always stays fixed at 3 MBd.

Fig. 4 UART interface: physical layout.

The details of the UART connector can be seen in Fig. 4 and Table 5. Pin 1 is internally connected to

the 5V-Pin of the USB connector; so if no USB is connected, a power source has to be connected to

this pin. An internal voltage regulator converts this 5V to 3.3V that powers the microcontroller. This

3.3V rail is present at Pin 2 (output only); so external devices connected by the user may also be

powered by this pin (up to 200mA).

The serial communication uses 3.3V levels. Beware that the pins (except of the 5V power pin) are not

5V tolerant and no further ESD protection is applied!

To set the external Baudrate, use the following command:

extBdR,x> "externe Baudrate / set Baud rate of external UART connector“

x= Baudrate (Bit/s) (e.g. 2400, 9600, 28800, 57600, 115200, 460800, 921600, 3000000)

Sets the Baudrate of the optional external UART connector. The other parameters are: 8 data bits, 1

stop bit, no termination character, no handshake. The Baudrate changes immediately after execution

of this command.

When using significantly different Baudrates on both interfaces, there may be major differences on

how long the data transmission of whole spectra or peak arrays lasts. In this case, the correct settings

Pin No. Signal

1 +5V

2 +3.3V (output)

3 GND

4 RX

5 TX

Table 5 UART interface: electrical layout.

28

have to be well considered. For example, the transmission of a whole spectrum may take about 2

seconds when using UART transfer rates of 9600 Bd.

From firmware 10.0 on, the answer to every command is sent only to the interface this command

came from (USB or UART). In this way, it is for example possible to send single requests by USB to a

device mounted in a UART stack together with several others without obstructing the ongoing UART

communication.

1.10.2 Streaming mode
In the conventional sequential case as described in the previous sections (every spectrum or peak

array is individually requested for by the remote computer) it is in the responsibility of the remote

control device sending the next request not until it received the whole requested data set (i.e. until

the „Ende“ sign). As soon as the microcontroller receives a new s> or P> command, it interrupts the

transmission and starts a new one. So when using s> and P> commands, the requesting side (re-

gardless if connected on external UART or USB) has to make sure it received the whole data before

sending a new request.

In streaming mode, however, it is not necessary to send single requests; the microcontroller auto-

matically sends new data as soon as the transmission is fully accomplished and new data is availa-

ble. Streaming mode is available both with USB and UART operation.

To switch between streaming and sequential mode, the following command may be used:

DauSe,x> "Dauersenden / set Streaming mode“

x=0: Sequential mode; s> and P> command may be used. (Standard setting)

x=1: Peak arrays (like the ones resulting from P> command) are transmitted endlessly until another

DauSe,x> or o> command is sent to the FiSpec device

x=2: Complete spectra (as following s,1> commands) are transmitted endlessly until another

DauSe,x> or o> command is sent

The data stream will be sent to the interface that sent the command initiating the stream (USB or

UART). This target interface will be saved into EEPROM when using the speichern> command, so

in case streaming mode is activated and saved, after repowering the data stream will go to the same

interface.

1.11 Autostart mode, and Saving settings to Flash memory
Like already described in chapter 1.3, after connecting the spectrometer to a power source, it is nec-

essary to start the internal measurement process (command a>) and switch the internal light source

on (command LED,x>) prior to measurements. This can also be done automatically, i.e. if a instantly

starting warm-up of the system (with the LED being a significant heat source) is desired. This natural-

ly comes at the cost of higher power consumption from the very beginning on, however.

AuSt,x> "Autostart schalten / Switch Autostart"

x=0: no Autostart; measurements have to be initiated by a> and LED,1> command

x=1: Autostart (has to be saved into Flash by the speichern> command to be effective)

29

speichern> "Einstellungen speichern / Save settings to flash memory"

Saves the current state (Autostart, streaming mode, peak channels, integration time, averages, zero

values for onboard calculation, UART parameters, dark spectrum) to flash memory. BEWARE: no

wear leveling is applied when saving, so this command is not to be used routinely, but only when

really necessary. Each time the command is executed, an internal counter is incremented (value

shown in "#Schreibzugriffe_x" after p?> command).

When, besides of Autostart, streaming mode is also activated and both settings are saved into the

Flash memory, it is possible to use the FiSpec as a completely self-sufficient system starting autono-

mously and sending a constant serial data stream without any external commands. As the zero chan-

nel values of the onboard calculations are also being saved, a certain combination of FiSens interro-

gator and FBG sensor chain can then be used without further action (like setting of channels or zero-

ing) necessary as long as the system remains unchanged.

Beware, however, that automatically starting streaming at high data rates may flood your remote

serial interface (depending on the programming techniques and hardware used) with data up to the

point of unaddressability. So before saving the combination of Autostart and streaming mode to flash

memory, it is wise to test streaming mode beforehand in the planned manner. In case of problems, it

can be useful to just send DauSe,0> commands several times while purging the i/o buffers to re-

gain control.

FiSens recommends not to exceed 50 saving processes

in total during the lifetime of the device to avoid data

corruption. Any "#Schreibzugriffe_x" values higher

than 51 will void warranty.

30

2 Program code examples

2.1 Examplary commands sequences for setting up onboard calculation
In this subchapter, a possible command sequence is explained to set up the spectrometers in order

to measure wavelength or strain/temperature values with FBG sensors attached to a FiSpec device.

As initial zero values, the ones that are already known of the FBGs will be used, e.g. the wavelengths

0 can be derived from the data sheet and the room temperature can be set as zero temperature T0.

If you plan on applying the OBN> "zero" command (i.e. all sensors are of known temperature while

zeroing), the exact zero values are not important and should only be roughly fitting (i.e. inside the

channel borders); with OBN> they will later be automatically set by the Spectrometer itself.

Now say, for example, you want to measure two FBGs:

-one FBG wavelength at 825nm, channel borders at +/-2nm, i.e. 823 and 827nm

-one FBG wavelength at 830nm, channel borders at +/-2nm, i.e. 828 and 832nm

Then you have to send the following commands:

Basic settings of the spectrometer:
LED,1> //switch on the light source

iz,639> //some integration time, for example 639µs

m,1> //set averaging to "1"

a> //start measurement

Now, the channels to be measured will be set:
Ke,0,8230000,8270000> //channel number 0, 825nm FBG

Ke,1,8280000,8320000> //channel number 1, 830nm FBG

KA,2> //set the number of channels to be calculated

//and transmitted (here: two)

From now on, everything is set and the system is running. The results of the P> command now con-

sist of wavelength (about 800...900nm) and intensity (about 2000...65000) values.

If you want to use the onboard calculation mode, however, you have to provide further information

about the attached sensor:
OBsaT0,2100> //set zero temperature T_0=21°C for all

//channels at once (if you plan to zero your

//FBGs at other temperatures than 21°C, this

//temperature should be set here; setting every

//FBG to its own different zero temperature can

//be done by the OBseT0,x,y> command)

OBsWL0,0,8250000> //set zero wavelength 825nm for channel 0

OBsWL0,1,8300000> //set zero wavelength 830nm for channel 1

OBsTyp,0,1> //set channel 0 type as a temperature FBG

OBsTyp,1,1> //set channel 1 type as a temperature FBG

OBB,1> //activate on board calculation

Now the P>-command's answer will consist of the calculated strain (in µm/m) and temperature (in

°C) values.

After ensuring that all FBG physically are at the zero temperature previously defined by the OB-

saT0,x> command, the system has to be zeroed. After setting the channels there should be some

31

delay applied, so that a few measurements can be done whose measurent results can be used for

zeroing purposes! Now zero:
OBN> //the currently measured peak wavelengths of

//the channels are from now on used as zero

//wavelenghts

Now, the peak information (values depending on the previously set on board calculation mode) can

be derived by repeatedly sending the P> command:
P> //ask for the latest calculated FBG

//temperature/strain

Immediately after zeroing, while the FBG temperature and mechanical state has not changed yet, the

output strain/temperature values should be near +/-0µm/m and T0, respectively.

2.2 LabView program code
The following section shows some basic LabView code that can be used as a basis for own programs.

This code is also included in the example program FiSpec Data processing_LV2014.vi

that is delivered separately.

Fig. 5 shows how to process the data string the microcontroller transmits after the P> command. In

case of the s> command, data has to be processed like shown in Fig. 7.

Fig. 5 LabView code: data processing for "on board peak detection" case.

32

Fig. 6 LabView code: data processing for "on board edge measurements" case (E> command).

Fig. 7 LabView code: data processing for transmitted spectrum.

In Fig. 8 is shown how to get the signal quality information for each FG channel: four loop iterations

covering four possible fiber ports (32bit for 32 peak detection channels). In the fifth 32bit number

(lower loop), each byte represents one of the four fiber ports, while the first four bits of each byte

indicate the four different error codes.

Fig. 8 LabView code: data processing for error code answers.

33

Fig. 9 and Fig. 10 show how to read or send single precision (i.e. 32bit) floating point numbers used in

the cubic polynomial Temperature fit commands:

Fig. 9 LabView code: sending floating point numbers to the microcontroller (here: example for setting a cubic parameter).

Fig. 10 LabView code: extracting floating point numbers from the microcontroller's answer string following the KubPa-

ram?> command (inner loop: four parameters, outer loop: four fiber types).

Fig. 11 LabView code: extracting floating point numbers following the EKFParam?> command. Inner loop: four parameters

TC_y; middle loop: 32 peak detection channels; outer loop: four fiber ports.

34

2.3 C program code
On the following pages you find an example C program that shows some simple communication via

windows. It was tested to run with CodeBlocks and MinGW compiler.
/**

 * Copyright (c) 2020 FiSens GmbH

 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software and asso-

ciated documentation files (the "Software"), to deal in the Software without restriction, including without

limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of

the Software, and to permit persons to whom the Software is furnished to do so, subject to the following

conditions:

 * The above copyright notice and this permission notice shall be included in all copies or substantial

portions of the Software.

 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT

LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO

EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER

IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE

USE OR OTHER DEALINGS IN THE SOFTWARE.

*/

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <windows.h>

int main()

{

 /* Windows COM-Port */

 HANDLE comPort;

 DWORD read_write_length;

 int portNo = 23;

 char portName[32];

 int n;

 /* Windows COM-Port */

 /* Buffer for send/receive */

 char send[32];

 char receive[1024] = {0};

 char int_buf[12];

 /* Buffer for send/receive */

 /* Open COM-Port */

 sprintf(portName, "\\\\.\\COM%d", portNo);

 comPort = CreateFile(portName, GENERIC_READ|GENERIC_WRITE, 0, 0, OPEN_EXISTING, 0, 0);

 if(comPort == INVALID_HANDLE_VALUE)

 {

 printf("\terror: COM%d is not available. \n", portNo);

 return -1;

 }

 /* Open COM-Port */

 /* COM-Port configuration */

 DCB dcbSerialParameters = {0};

 dcbSerialParameters.DCBlength = sizeof(dcbSerialParameters);

 if(!GetCommState(comPort, &dcbSerialParameters))

 {

 printf("Error");

 }

 dcbSerialParameters.BaudRate = 3000000;

 dcbSerialParameters.ByteSize = 8;

 dcbSerialParameters.StopBits = ONESTOPBIT;

 dcbSerialParameters.Parity = NOPARITY;

 if(!SetCommState(comPort, &dcbSerialParameters))

 {

 printf("Unable to set serial port settings\n");

 }

 /* COM-Port configuration */

 /* Timeout configuration */

 COMMTIMEOUTS timeouts = {0};

 timeouts.ReadIntervalTimeout = 50;

 timeouts.ReadTotalTimeoutConstant = 50;

 timeouts.ReadTotalTimeoutMultiplier = 10;

 timeouts.WriteTotalTimeoutConstant = 50;

 timeouts.WriteTotalTimeoutMultiplier = 10;

 if(!SetCommTimeouts(comPort, &timeouts))

 {

 printf("Error setting timeouts\n");

 }

 /* Timeout configuration */

35

 /* COM-Port is open */

 printf("COM%d opened successfully\n", portNo);

 /* COM-Port is open */

 /* Connect to device */

 _Bool device_available = 0;

 while(!device_available)

 {

 printf("Connecting...\n");

 /* Send command "?>" */

 strcpy(send,"?>");

 n = strlen(send);

 WriteFile(comPort, send, n, &read_write_length, 0);

 /* Send command "?>" */

 /* Receive data */

 strset(receive, 0);

 Sleep(100);

 ReadFile(comPort, receive, sizeof(receive), &read_write_length, 0);

 /* Receive data */

 if(read_write_length > 0)

 {

 if(strncmp(receive, "FiSpec FBG X100", 15) == 0) {device_available = 1;}

 else if(strncmp(receive, "FiSpec FBG X150", 15) == 0) {device_available = 1;}

 else {device_available = 0;}

 }

 }

 printf("Connected to: %s", receive);

 /* Connect to device */

 /* Configuring the device */

 /* Set active channels */

 int FBG_count = 4;

 int FBG_wavelength[4] = {8200000, 8300000, 8400000, 8500000};

 int FBG_halfwidth = 15000;

 for(int i=0; i<FBG_count; i++)

 {

 strcpy(send,"Ke,");

 sprintf(int_buf, "%d", i);

 strcat(send,int_buf);

 strcat(send,",");

 sprintf(int_buf, "%d", FBG_wavelength[i]-FBG_halfwidth);

 strcat(send,int_buf);

 strcat(send,",");

 sprintf(int_buf, "%d", FBG_wavelength[i]+FBG_halfwidth);

 strcat(send,int_buf);

 strcat(send,">");

 n = strlen(send);

 WriteFile(comPort, send, n, &read_write_length, 0);

 Sleep(10);

 }

 /* Set active channels */

 /* Set quantity of active FBG */

 strcpy(send,"KA,");

 sprintf(int_buf, "%d", FBG_count);

 strcat(send,int_buf);

 strcat(send,">");

 n = strlen(send);

 WriteFile(comPort, send, n, &read_write_length, 0);

 Sleep(10);

 /* Set quantity of active FBG */

 /* Set integration time */

 int integration_time = 50000;

 strcpy(send,"iz,");

 sprintf(int_buf, "%d", integration_time);

 strcat(send,int_buf);

 strcat(send,">");

 n = strlen(send);

 WriteFile(comPort, send, n, &read_write_length, 0);

 Sleep(10);

 /* Set integration time */

 /* LED on */

 strcpy(send,"LED,1>");

 n = strlen(send);

 WriteFile(comPort, send, n, &read_write_length, 0);

 Sleep(10);

 /* LED on */

 /* Starting internal measurements */

 strcpy(send,"a>");

 n = strlen(send);

 WriteFile(comPort, send, n, &read_write_length, 0);

 Sleep(10);

 /* Starting internal measurements */

 /* Configuring the device */

36

 /* Repeat measurements */

 int FBG_peak[4] = {8200000, 8300000, 8400000, 8500000};

 int FBG_ampl[4] = {0, 0, 0, 0};

 strcpy(send,"P>");

 n = strlen(send);

 while(1)

 {

 /* Send command "P>" */

 WriteFile(comPort, send, n, &read_write_length, 0);

 Sleep(10);

 /* Send command "P>" */

 /* Receive data */

 strset(receive, 0);

 ReadFile(comPort, receive, sizeof(receive), &read_write_length, 0);

 /* Receive data */

 /* If end marker is recognized, display the data with timestamps */

 if(receive[read_write_length-4] == 'E' &&

 receive[read_write_length-3] == 'n' &&

 receive[read_write_length-2] == 'd' &&

 receive[read_write_length-1] == 'e')

 {

 printf("\n%d", (int)time(NULL));

 for(int i=0;i<FBG_count;i++)

 {

 FBG_peak[i] = (unsigned char)receive[8*i] + 256*(unsigned char)receive[8*i + 1] +

65536*(unsigned char)receive[8*i + 2] + 16777216*(unsigned char)receive[8*i + 3];

 FBG_ampl[i] = (unsigned char)receive[8*i + 4] + 256*(unsigned char)receive[8*i + 5] +

65536*(unsigned char)receive[8*i + 6] + 16777216*(unsigned char)receive[8*i + 7];

 printf(",%d,%d", FBG_peak[i], FBG_ampl[i]);

 }

 }

 /* If end marker is recognized, display the data with timestamps */

 /* Wait twice the integration time (converted to ms) */

 Sleep(integration_time/500);

 /* Wait twice the integration time (converted to ms) */

 }

 /* Repeat measurements */

 /* Stop internal measurements */

 strcpy(send,"o>");

 n = strlen(send);

 WriteFile(comPort, send, n, &read_write_length, 0);

 Sleep(10);

 /* Stop internal measurements */

 /* LED off */

 strcpy(send,"LED,0>");

 n = strlen(send);

 WriteFile(comPort, send, n, &read_write_length, 0);

 Sleep(10);

 /* LED off */

 /* Close COM-Port */

 CloseHandle(comPort);

 /* Close COM-Port */

 return 0;

}

37

2.4 Python program code

2.4.1 Python code overview and libraries
The following two sub-chapters contain the source code. These are also part of the FiSpec SDK. The

code below was tested on both a desktop PC (Windows 11, Visual Studio Code) and with a Raspberry

Pi (Raspian, Thonny) and should be platform independent.

All libraries used by the developers are stored inside the ‘requirements.txt’ file which will be provid-

ed together with the python code.

The most important libraries for running the python code example are

• tkinter: generating the graphic user interface (GUI)

• matplotlib: creating graphs from data in list format

• pySerial: establishing a serial connection to a given COM-Port

• threading: running multiple tasks simultaneously

The user needs to install named libraries using the following commands in Windows command

prompt.

python -m pip install tkinter

python -m pip install matplotlib

python -m pip install pySerial

The python code example consists of two files:

• main.py – sending commands, receiving measurement data, mathematical operations

• FiSpec_GUI.py – Design of example GUI

To run the code first execute FiSpec_GUI.py followed by main.py. If successful, the graphic user

interface as shown below will pop up. Modification regarding the GUI can be achieved by editing

FiSpecGUI.py.

Side note – virtual environment:

If different versions of the named libraries are used for other projects on target device the user can

do so by creating virtual environments for those projects. After that it will be possible to run code

with specific, project-depending requirements.

A virtual environment can be created and controlled with the command prompt by using the follow-

ing commands:

1) Navigate to the directory in which ‘main.py’ and ‘FiSpec_GUI.py’ are located by using

cd [path to directory]

2) Create a virtual environment by using

python -m venv venv

which will create a virtual environment called ‘venv’ in the given directory. An additional folder

called ‘venv’ should now be visible inside the directory.

3) Activate the virtual environment by running

venv\scripts\activate.bat

38

in case of success the activation is shown by ‘(venv)’ at the beginning of a new line in windows

command prompt.

4) Install the necessary libraries by running the command lines from above or install all at once

by running

python -m pip install -r requirements.txt

5) If you want to add new libraries to your project you can do so by installing them and after-

wards save them in requirements.txt by running

python -m pip freeze > requirements.txt

If you’re using source control (for example GitHub) it will now be easier for other project partici-

pants to reconstruct the code to a running version by passing the ‘requirements.txt’ file together

with the code.

Fig. 12 GUI of the python example program.

39

After starting the program, the user has to pick a COM-Port by selection in the optionsmenu. If the

“Connect Port”-button is pressed and if a FiSens device can be found under the given COM-Port the

program connects to the device via the pySerial package. Upon start an object of the Serial class will

be created. By initializing the attributes of this object the serial port can be configured, for example

setting values for timeouts, stopbits, baudrate etc. If the program is successfully connected to a de-

vice the other buttons of the graphic user interface become enabled.

By using the Buttons and entry fields the user can try and test some fundamental functions from the

FiSpec program. The table below shows all implemented commands in the python example code.

Command Description Button in GUI

Ke,x,y,z> Peak detection details Connect Port

LED,1> Switches internal light source Connect Port

WLL> Get wavelength of pixel list Connect Port

OBB,x> Switch on board calculation Peak / Amplitude – Tem-
perature/Strain

a> Globally start measurement

iz,x> Set integration time Set Integration Time

KA,x> Transmit channel number Active Channels

m,x> Set averaging Set Averaging

OBN,x Set zero values Set Zero Values

AO,x> Auto-optimization Auto-Optimize

P> Get measurement data Start/Stop Measurement

s> Get Spectrum Start/Stop Spectrum
Table 6 Commands used in the Python example program.

2.4.2 Python file "main.py"

FiSens FiSpec - main

Version 0.3

November, 2022

from tkinter import BOTH

import FiSpec_GUI as fsG

import serial.tools.list_ports

import threading

import matplotlib as plt

plt.use ('TkAgg')

from matplotlib.backends.backend_tkagg import (FigureCanvasTkAgg)

from matplotlib.figure import Figure

from matplotlib import style

import time

style.use("ggplot")

measIsOn=False # Flag which indicates if measurement is running.

specIsOn=False # Flag which indicates if spectrum is running.

pausedSpec=False # Flag which indicates if the spectrum is paused. While configuring the Spectrum should

not run.

internalMode0 = False # Flag which indicates which kind of measurement data will be provided

oldPort=""

xWll = [] # stores wavelength list (x-axis) of the plot

ySpec = [] # stores amplitude liste (y-axis) of the plot

fbg_count=4

fbg_wavelength=[8200000, 8300000, 8400000, 8500000]

fbg_halfwidth= 15000

bufferSize = 4096

def buildSpectrum():

 global fig, ax, canvas

 plotSize = (5, 3)

 fig = Figure(plotSize) # creating a figure which will contain the spectrum

 fig.tight_layout()

40

 ax = fig.add_subplot(111) # adding the plot to fig

 ax.set_title('Spectrum', fontsize=10)

 ax.set_facecolor('black')

 # ax.set_xlim(left=770, right=910)

 # ax.set_ylim(bottom=0, top=10000)

 ax.set_xlabel('Wavelength [nm]', fontsize=8)

 ax.set_ylabel('Amplitude', fontsize=8)

 ax.grid(color='yellow')

 canvas = FigureCanvasTkAgg(fig, fsG1.frame_Plot) # creating a canvas object and embedd fig which will

contain the spectrum plot

 # canvas.get_tk_widget().pack(fill=tk.BOTH, expand=1) #

 canvas.get_tk_widget().pack(fill=BOTH, expand=1)

 canvas.draw()

def sendrecv(command):

 try:

 ser.flushInput()

 ser.write(command.encode())

 except:

 print("Failed to send a message!")

 return ""

 try:

 response=ser.read(size=bufferSize)

 except:

 print("No response received on COM-Port!")

 return ""

 return response

def checkCOMs():

 global oldPort, measIsOn, specIsOn

 # check for available COM-Ports

 fsG1.checkCOMs()

 if fsG1.portObj.get()!=oldPort:

 try:

 ser.close()

 except:

 pass

 measIsOn=False

 specIsOn=False

 fsG1.disableButtons()

 elif ser.is_open:

 fsG1.enableButtons()

 else:

 measIsOn=False

 specIsOn=False

 fsG1.disableButtons()

 oldPort=fsG1.portObj.get()

def connectCOM():

 # Try to connect to selected COM Port and execute configurations

 global ser, oldPort

 dev_available=0

 ser.port = fsG1.portObj.get() # Get selection from Optionsmenu

 ser.baudrate = 3000000 # Configure COM-Port

 ser.bytesize = 8

 ser.parity = "N"

 ser.stopbits = 1

 ser.timeout = 0.5

 try:

 ser.open()

 except:

 print("Failed to open COM-Port!")

 return

 if ser.is_open:

 print("Successfully connected to device on COM-Port: " + ser.port)

 dev_dec = sendrecv("?>")

 fsG1.enableButtons()

 try:

 print(dev_dec)

 if dev_dec == "FiSpec FBGX100":

 dev_available=1

 print("Connected to device: " + dev_dec)

 elif dev_dec == "FiSpec FBGX150":

 dev_available=1

 print("Connected to device: " + dev_dec)

 elif dev_dec == "FiSpec FBGX152":

 dev_available=1

 print("Connected to device: " + dev_dec)

 else:

41

 dev_available=0

 print("Error: No FiSens-device found!")

 # fsG1.disableButtons()

 # ser.close()

 # return

 except:

 dev_available=0

 print("Error: No device found!")

 return

 # Configure device after establishing a connection

 # For further information on commands check FiSens FiSpec Programmer's manual

 wlconfig() # "Ke,x,y,z>"

 ledON() # "LED,x>"

 checkWL() # "WLL>"

 integration() # "iz,x>"

 setAveraging() # "m,x>"

 startInternal() # "a>"

 setInternalMode() # "OBB,x>"

def wlconfig():

 # Set peak detection channel details. Use default values first

 # Can be configured by typing user specific wavelength numbers in entry fields

 global fsG1, specIsOn, pausedSpec

 if specIsOn == True: # while configuring the device, the spectrum should not be running

 specIsOn == False # pause the spectrum ...

 pausedSpec=True

 fbg_wavelength[0] = fsG1.setwl_1.get()

 fbg_wavelength[1] = fsG1.setwl_2.get()

 fbg_wavelength[2] = fsG1.setwl_3.get()

 fbg_wavelength[3] = fsG1.setwl_4.get()

 for x in range(len(fbg_wavelength)):

 ma1=int(fbg_wavelength[x])-fbg_halfwidth

 ma2=int(fbg_wavelength[x])+fbg_halfwidth

 conf_msg="Ke," + str(x) + "," + str(ma1) + "," + str(ma2) + ">"

 ser.flushInput()

 ser.write(conf_msg.encode())

 print("Device configured: " + conf_msg)

 time.sleep(0.5)

 if pausedSpec == True:

 specIsOn == True # ... restart the spectrum

 pausedSpec=False # pause ends here

def ledON():

 # Switches internal light source (0=off, 1= on)

 global specIsOn, pausedSpec

 if specIsOn == True:

 specIsOn == False

 pausedSpec=True

 try:

 ser.flushInput()

 ser.write("LED,1>".encode())

 print("Turn on internal LED")

 except:

 print("Error: LED")

 return

 time.sleep(0.5)

 if pausedSpec == True:

 specIsOn == True

 pausedSpec=False

def checkWL():

 # Get wavelength of pixel list - x-axis of spectrum

 global xWll

 try:

 wll_data=sendrecv("WLL>")

 except:

 print("Error: WLL>")

 return

 wll_data_len = len(wll_data)

 wll_data_len4=int(wll_data_len/4)

 for j in range(wll_data_len4-1):

 try:

 xWll.append((wll_data[4*j] + 256*wll_data[4*j+1] + 65536*wll_data[4*j+2] +

16777216*wll_data[4*j+3])/10000)

42

 except:

 pass

def setInternalMode():

 global internalMode0, specIsOn, pausedSpec

 if specIsOn == True:

 specIsOn == False

 pausedSpec=True

 if internalMode0 == False:

 try:

 ser.write("OBB,0>".encode())

 internalMode0 = True

 fsG1.toggleMeasMode_Bt.configure(text="Temperature / Strain")

 except:

 print("Error: Set internal Measurement Mode")

 return

 time.sleep(0.5)

 else:

 try:

 ser.write("OBB,1>".encode())

 internalMode0 = False

 fsG1.toggleMeasMode_Bt.configure(text="Peak / Amplitude")

 except:

 print("Error: Set internal Measurement Mode")

 pass

 time.sleep(0.5)

 if pausedSpec == True:

 specIsOn == True

 pausedSpec=False

def startInternal():

 # Globally start measurement

 global specIsOn, pausedSpec

 if specIsOn == True:

 specIsOn == False

 pausedSpec=True

 try:

 ser.write("a>".encode())

 except:

 print("Error: a> - Globally start measurement")

 return

 time.sleep(0.5)

 if pausedSpec == True:

 specIsOn == True # then start it again

 pausedSpec=False

def integration():

 # Set integration time

 global specIsOn, pausedSpec

 if specIsOn == True:

 specIsOn == False

 pausedSpec=True

 integration_time=fsG1.intT_In.get()

 try:

 intT_Value=int(integration_time)

 except:

 print("Error: Not a number!")

 return

 if type(intT_Value) == int:

 setIt_msg="iz," + str(integration_time) + ">"

 try:

 ser.write(setIt_msg.encode())

 except:

 print("Error: Set integration time")

 pass

 if pausedSpec == True:

 specIsOn == True # then start it again

 pausedSpec=False

def setChannel():

 # Set number of active Channels

 global specIsOn, pausedSpec

 if specIsOn == True:

 specIsOn == False

 pausedSpec=True

43

 fbg_count=fsG1.setCh_In.get()

 try:

 fbg_count_value=int(fbg_count)

 except:

 print("Not a number!")

 return

 if type(fbg_count_value)==int:

 setCh_msg="KA," + str(fbg_count_value) + ">"

 try:

 ser.write(setCh_msg.encode())

 except:

 print("Error: KA,x> - Set number of active channels")

 pass

 if pausedSpec == True:

 specIsOn == True # then start it again

 pausedSpec=False

def setAveraging():

 #Set averaging

 global specIsOn, pausedSpec

 if specIsOn == True:

 specIsOn == False

 pausedSpec=True

 aver=fsG1.setAv_In.get()

 try:

 aver_value=int(aver)

 except:

 print("Not a number!")

 return

 if type(aver)==int:

 setAv_msg="m," + str(aver_value) + ">"

 try:

 ser.write(setAv_msg.encode())

 except:

 print("Error: Averaging")

 pass

 if pausedSpec == True:

 specIsOn == True # then start it again

 pausedSpec=False

def setZero():

 # Set actual values as zero values

 global specIsOn, pausedSpec

 if specIsOn == True:

 specIsOn == False

 pausedSpec=True

 setZe_msg="OBN,x>"

 try:

 ser.write(setZe_msg.encode())

 except:

 print("Error: Set Zero Values")

 pass

 if pausedSpec == True:

 specIsOn == True # then start it again

 pausedSpec=False

def setAutoOpt():

 # Start auto-optimization of integration time / averages

 # If successful, values in entry fields will be overwritten

 global specIsOn, pausedSpec

 if specIsOn == True:

 specIsOn == False

 pausedSpec=True

 vAO=fsG1.setAO_In.get()

 try:

 vAO_=int(vAO)

 except:

 print("Error: Not a number!")

 return

 if type(vAO_)==int:

 vAO_msg="AO," + str(vAO_) + ">"

 rcv_data=sendrecv(vAO_msg)

 try:

 intT_ao = rcv_data[0]

 aver_ao = rcv_data[1]

44

 intT_ao_str = str(intT_ao)

 aver_ao_str = str(aver_ao)

 print("Integration time optimized" +intT_ao_str)

 print("Average optimized" + aver_ao_str)

 except:

 print("Error: Auto-optimization")

 return

 val_intT_ao = "".join([i for i in intT_ao_str if i.isdigit()])

 val_aver_ao = "".join([i for i in aver_ao_str if i.isdigit()])

 intT_ao_ = int(val_intT_ao)*1000

 print(str(val_intT_ao))

 print(str(val_aver_ao))

 fsG1.intT_In.delete(0, 6)

 fsG1.intT_In.insert(0, str(intT_ao_))

 fsG1.setAv_In.delete(0, 6)

 fsG1.setAv_In.insert(0, val_aver_ao)

 if pausedSpec == True:

 specIsOn == True # then start it again

 pausedSpec=False

def measurement():

 # Requests data from device and displays the numeric values in form of labels - "P>"-Command

 global ser

 fbg_peak=[8200000, 8300000, 8400000, 8500000]

 fbg_ampl=[0, 0, 0, 0]

 fbg_strain=[-5000000, -50, -50, -50]

 fbg_temp=[-5000000, -50, -50, -50]

 while 1:

 if measIsOn == True:

 if ser.is_open:

 rcv_data=sendrecv("P>")

 else:

 print("COM-Port is closed. Try again!")

 if internalMode0 == True:

 # Received data represents Wavelength and Amplitude

 for i in range(fbg_count):

 try:

 fbg_peak[i] = (rcv_data[8*i] + 256*rcv_data[8*i+1] + 65536*rcv_data[8*i+2] +

16777216*rcv_data[8*i+3])/10000

 fbg_ampl[i] = (rcv_data[8*i+4] + 256*rcv_data[8*i+5] + 65536*rcv_data[8*i+6] +

16777216*rcv_data[8*i+7])/10000

 except:

 print("Error: Measurement - No Data")

 pass

 fsG1.label_Peak1.configure(text="Peak 1: " + str(fbg_peak[0]))

 fsG1.label_Peak2.configure(text="Peak 2: " + str(fbg_peak[1]))

 fsG1.label_Peak3.configure(text="Peak 3: " + str(fbg_peak[2]))

 fsG1.label_Peak4.configure(text="Peak 4: " + str(fbg_peak[3]))

 fsG1.label_Ampl1.configure(text="Amplitude 1: " + str(fbg_ampl[0]))

 fsG1.label_Ampl2.configure(text="Amplitude 2: " + str(fbg_ampl[1]))

 fsG1.label_Ampl3.configure(text="Amplitude 3: " + str(fbg_ampl[2]))

 fsG1.label_Ampl4.configure(text="Amplitude 4: " + str(fbg_ampl[3]))

 else:

 # Received data represents Strain and Temperature

 for i in range(fbg_count):

 try:

 strain_4bytes=[rcv_data[8*i], rcv_data[8*i+1], rcv_data[8*i+2], rcv_data[8*i+3]]

 fbg_strain[i]=int.from_bytes(strain_4bytes, byteorder="little", signed=True) /

10000

 temp_4bytes=[rcv_data[8*i+4], rcv_data[8*i+5], rcv_data[8*i+6], rcv_data[8*i+7]]

 fbg_temp[i] = int.from_bytes(temp_4bytes, byteorder="little", signed=True) / 100

 except:

 print("Error: No Data")

 pass

 fsG1.label_Peak1.configure(text="Strain 1: " + str(fbg_strain[0]))

 fsG1.label_Peak2.configure(text="Strain 2: " + str(fbg_strain[1]))

 fsG1.label_Peak3.configure(text="Strain 3: " + str(fbg_strain[2]))

 fsG1.label_Peak4.configure(text="Strain 4: " + str(fbg_strain[3]))

 fsG1.label_Ampl1.configure(text="Temperature 1: " + str(fbg_temp[0]))

 fsG1.label_Ampl2.configure(text="Temperature 2: " + str(fbg_temp[1]))

 fsG1.label_Ampl3.configure(text="Temperature 3: " + str(fbg_temp[2]))

 fsG1.label_Ampl4.configure(text="Temperature 4: " + str(fbg_temp[3]))

 time.sleep(1)

def ctrlMeas():

 # Toggles Button Start Measurement and sets Variable measIsOn which enables/disables the function

 global measIsOn

45

 if measIsOn:

 fsG1.meas_Bt.config(text='Start Measurement')

 measIsOn=False

 else:

 fsG1.meas_Bt.config(text='Stop Measurement')

 measIsOn=True

def updateSpectrum():

 # Requests data from device and displays it as a spectrum - "s>"-Command

 global fig, ax, canvas, ySpec, xWll

 while 1:

 if specIsOn == True:

 if ser.is_open:

 try:

 ySpec.clear()

 spec_data=sendrecv("s>")

 spec_data_len=len(spec_data)

 spec_data_len2=int(spec_data_len/2)

 for i in range(spec_data_len2):

 try:

 ySpec.append(spec_data[2*i]+256*spec_data[2*i+1])

 except:

 pass

 fig.clear()

 ax.clear()

 ax = fig.add_subplot(111)

 ax.set_title('Spectrum', fontsize=10)

 ax.set_facecolor('black')

 ax.set_xlabel('Wavelength [nm]', fontsize=8)

 ax.set_ylabel('Amplitude', fontsize=8)

 ax.grid(color='yellow')

 try:

 ax.set_ylim(bottom=0, top=30000)

 # if len(xWll) < 2000:

 # checkWL()

 if len(xWll) > len(ySpec):

 # y and x List have to have same dimension

 while(len(xWll) > len(ySpec)):

 ySpec.append(0)

 ax.plot(xWll, ySpec, c='green')

 elif len(xWll) < len(ySpec):

 while(len(xWll) < len(ySpec)):

 ySpec.pop()

 ax.plot(xWll, ySpec, c='green')

 else:

 ax.plot(xWll, ySpec, c='green')

 except:

 pass

 canvas.get_tk_widget().pack(fill=BOTH, expand=1)

 canvas.draw()

 except:

 print("Error: Spectrum Data Request")

 pass

 else:

 print("COM-Port is closed. Try again!")

 time.sleep(1)

def ctrlSpec():

 # Toggles Button Start Specrum and sets Variable specIsOn which enables/disables the function

 global specIsOn

 if specIsOn:

 fsG1.spec_Bt.config(text='Start Spectrum')

 specIsOn=False

 else:

 fsG1.spec_Bt.config(text='Stop Spectrum')

 specIsOn=True

def assignButtons():

 fsG1.refreshCOM_Bt.configure(command=checkCOMs) # assign the function to the button

 fsG1.connect_COM_Bt.configure(command=connectCOM)

 fsG1.setwl_Bt.configure(command=wlconfig)

 fsG1.toggleMeasMode_Bt.configure(command=setInternalMode)

 fsG1.intT_Bt.configure(command=integration)

 fsG1.setCh_Bt.configure(command=setChannel)

 fsG1.setAv_Bt.configure(command=setAveraging)

 fsG1.setZe_Bt.configure(command=setZero)

 fsG1.setAO_Bt.configure(command=setAutoOpt)

 fsG1.meas_Bt.configure(command=ctrlMeas)

 fsG1.spec_Bt.configure(command=ctrlSpec)

if __name__ == '__main__':

 ser=serial.Serial(timeout=30)

46

 fsG1 = fsG.FiSpec_GUI() # creating an object of the FiSpec_GUI class

 assignButtons()

 fsG1.disableButtons() # Disable buttons on first launch

 buildSpectrum() # prepare Spectrum

 checkCOMs() # checking for available COM-Ports

 # Create 2 threads which will do work simultaneously

 t_measurement = threading.Thread(target=measurement, daemon=True)

 t_measurement.start()

 t_createSpectrum = threading.Thread(target=updateSpectrum, daemon=True)

 t_createSpectrum.start()

 fsG1.master.mainloop()

2.4.3 Python file "FiSpec_GUI.py"

FiSens FiSpec, GUI Class, Version 0.3 - Coded with Python. November, 2022

import tkinter as tk

from tkinter import Frame, StringVar, Label, Entry, Button, OptionMenu

from tkinter import DISABLED

from tkinter import NORMAL

import sys

import glob

import serial

import serial.tools.list_ports

The GUI class. All tkinter widgets (Frames, Buttons, Labels, etc.) are defined as attributes.

Also, positioning of those widgets is specified in this class

class FiSpec_GUI:

 def __init__(self):

 self.master=tk.Tk()

 self.master.configure(background="white")

 self.master.title("FiSens - FiSpec. Coded with Python. Version 0.3 - October 2022")

 self.master.geometry("1000x1000")

 # ----------

 self.frame_COM_select = Frame(master=self.master)

 self.frame_COM_select.place(x=5,y=5, width=490, height=40)

 self.portObj = StringVar(master=self.master)

 self.portList = ["COM-Ports"]

 self.portObj.set(self.portList[0])

 self.drop_COM = OptionMenu(self.frame_COM_select, self.portObj, *self.portList)

 self.drop_COM.grid(row=0, column=0)

 self.refreshCOM_Bt = Button(self.frame_COM_select, text="Refresh List", font=('Helvatical

bold',10))

 self.refreshCOM_Bt.place(x=150, y=2, width=120)

 self.connect_COM_Bt = Button(self.frame_COM_select, text="Connect Port", font=('Helvatical

bold',10))

 self.connect_COM_Bt.place(x=300, y=2, width=120)

 # ----------

 self.frame_start_meas = Frame(master=self.master)

 self.frame_start_meas.place(x=5,y=50, width=490, height=45)

 self.toggleMeasMode_Bt = Button(self.frame_start_meas, text="Peak / Amplitude", font=('Helvatical

bold',10))

 self.toggleMeasMode_Bt.place(x=300, y=2, width=120)

 self.meas_Bt = Button(self.frame_start_meas, text="Start Measurement", font=('Helvatical bold',10))

 self.meas_Bt.place(x=150, y=2, width=120)

 # ----------

 self.frame_start_spec = Frame(master=self.master)

 self.frame_start_spec.place(x=5,y=100, width=490, height=45)

 self.spec_Bt = Button(self.frame_start_spec, text="Start Spectrum", font=('Helvatical bold',10))

 self.spec_Bt.place(x=150, y=2, width=120)

 # ----------

 self.frame_intgt = Frame(master=self.master)

 self.frame_intgt.place(x=5,y=150, width=490, height=45)

 self.intT_In = Entry(self.frame_intgt, width=20, font=('Helvatical bold',10))

 self.intT_In.place(x=15, y=2)

 self.intT_In.insert(0, "50000")

 self.intT_Bt = Button(self.frame_intgt, text="Set Integration Time", font=('Helvatical bold',10))

 self.intT_Bt.place(x=150, y=0, width=120)

 # ----------

 self.frame_setCh = Frame(master=self.master)

47

 self.frame_setCh.place(x=5,y=200, width=490, height=45)

 self.setCh_In = Entry(self.frame_setCh, width=20, font=('Helvatical bold',10))

 self.setCh_In.place(x=15, y=2)

 self.setCh_In.insert(0, "4")

 self.setCh_Bt = Button(self.frame_setCh, text="Active Channels", font=('Helvatical bold',10))

 self.setCh_Bt.place(x=150, y=0, width=120)

 # ----------

 self.frame_setAv = Frame(master=self.master)

 self.frame_setAv.place(x=5,y=250, width=490, height=45)

 self.setAv_In = Entry(self.frame_setAv, width=20, font=('Helvatical bold',10))

 self.setAv_In.place(x=15, y=2)

 self.setAv_In.insert(0, "2")

 self.setAv_Bt = Button(self.frame_setAv, text="Set Averaging", font=('Helvatical bold',10))

 self.setAv_Bt.place(x=150, y=0, width=120)

 # ----------

 self.frame_setZe = Frame(master=self.master)

 self.frame_setZe.place(x=5,y=300, width=490, height=45)

 self.setZe_Bt = Button(self.frame_setZe, text="Set Zero Values", font=('Helvatical bold',10))

 self.setZe_Bt.place(x=150, y=0, width=120)

 # ----------

 self.frame_autoO = Frame(master=self.master)

 self.frame_autoO.place(x=5,y=350, width=490, height=45)

 self.setAO_In = Entry(self.frame_autoO, width=20, font=('Helvatical bold',10))

 self.setAO_In.place(x=15, y=2)

 self.setAO_In.insert(0, "2")

 self.setAO_Bt = Button(self.frame_autoO, text="Auto-optimize", font=('Helvatical bold',10))

 self.setAO_Bt.place(x=150, y=0, width=120)

 # ----------

 self.frame_Plot = Frame(master=self.master)

 self.frame_Plot.place(x=5,y=500, width=990, height=495)

 self.frame_Display_Data = Frame(master=self.master)

 self.frame_Display_Data.place(x=500,y=5, width=495, height=90)

 self.label_Peak1 = Label(self.frame_Display_Data, text="Peak 1: ", font=('Helvatical bold',10))

 self.label_Peak1.place(x=10, y=5)

 self.label_Peak2 = Label(self.frame_Display_Data, text="Peak 2: ", font=('Helvatical bold',10))

 self.label_Peak2.place(x=10, y=25)

 self.label_Peak3 = Label(self.frame_Display_Data, text="Peak 3: ", font=('Helvatical bold',10))

 self.label_Peak3.place(x=10, y=45)

 self.label_Peak4 = Label(self.frame_Display_Data, text="Peak 4: ", font=('Helvatical bold',10))

 self.label_Peak4.place(x=10, y=65)

 self.label_Ampl1 = Label(self.frame_Display_Data, text="Amplitude 1: ", font=('Helvatical

bold',10))

 self.label_Ampl1.place(x=200, y=5)

 self.label_Ampl2 = Label(self.frame_Display_Data, text="Amplitude 2: ", font=('Helvatical

bold',10))

 self.label_Ampl2.place(x=200, y=25)

 self.label_Ampl3 = Label(self.frame_Display_Data, text="Amplitude 3: ", font=('Helvatical

bold',10))

 self.label_Ampl3.place(x=200, y=45)

 self.label_Ampl4 = Label(self.frame_Display_Data, text="Amplitude 4: ", font=('Helvatical

bold',10))

 self.label_Ampl4.place(x=200, y=65)

 # ----------

 self.frame_wl = Frame(master=self.master)

 self.frame_wl.place(x=500, y=100, width=180, height=195)

 self.label_wl_1 = Label(self.frame_wl, text="Wavelength 1: ", font=('Helvatical bold',10))

 self.label_wl_1.place(x=10, y=25)

 self.setwl_1 = Entry(self.frame_wl, width=10, font=('Helvatical bold',10))

 self.setwl_1.place(x=100, y=25)

 self.setwl_1.insert(0, "8200000")

 self.label_wl_2 = Label(self.frame_wl, text="Wavelength 2: ", font=('Helvatical bold',10))

 self.label_wl_2.place(x=10, y=50)

 self.setwl_2 = Entry(self.frame_wl, width=10, font=('Helvatical bold',10))

 self.setwl_2.place(x=100, y=50)

 self.setwl_2.insert(0, "8300000")

 self.label_wl_3 = Label(self.frame_wl, text="Wavelength 3: ", font=('Helvatical bold',10))

 self.label_wl_3.place(x=10, y=75)

48

 self.setwl_3 = Entry(self.frame_wl, width=10, font=('Helvatical bold',10))

 self.setwl_3.place(x=100, y=75)

 self.setwl_3.insert(0, "8400000")

 self.label_wl_4 = Label(self.frame_wl, text="Wavelength 4: ", font=('Helvatical bold',10))

 self.label_wl_4.place(x=10, y=100)

 self.setwl_4 = Entry(self.frame_wl, width=10, font=('Helvatical bold',10))

 self.setwl_4.place(x=100, y=100)

 self.setwl_4.insert(0, "8500000")

 self.setwl_Bt = Button(self.frame_wl, text="Set Wavelengths", font=('Helvatical bold',10))

 self.setwl_Bt.place(x=20, y=135, width=120)

 def checkCOMs(self):

 # Updates the list of COM-Ports shown in the optionsmenu of the GUI

 # first destroy old widget and clear old list

 self.drop_COM.destroy()

 self.portList.clear()

 if sys.platform.startswith('win'):

 ports=serial.tools.list_ports.comports(include_links=True) #get available COM-Ports

 elif sys.platform.startswith('linux') or sys.platform.startswith('cygwin'):

 ports = glob.glob('/dev/tty[A-Za-z]*')

 elif sys.platform.startswith('darwin'):

 ports = glob.glob('/dev/tty.*')

 else:

 raise EnvironmentError('Unsupported platform')

 # and add them to the list

 for onePort in ports:

 if sys.platform.startswith('win'):

 self.portList.append(onePort.device)

 else:

 self.portList.append(onePort)

 # self.portObj.set(self.portList[0])

 # if no devices are found

 if len(self.portList) == 0:

 self.portList.append("No devices found!")

 self.portObj.set(self.portList[0])

 print(self.portList)

 # create new optionsmenu and place it in the GUI

 self.drop_COM = OptionMenu(self.frame_COM_select, self.portObj, *self.portList)

 self.drop_COM.grid(row=0, column=0)

 def enableButtons(self):

 self.toggleMeasMode_Bt.configure(state=NORMAL)

 self.spec_Bt.configure(state=NORMAL)

 self.meas_Bt.configure(state=NORMAL)

 self.intT_Bt.configure(state=NORMAL)

 self.setCh_Bt.configure(state=NORMAL)

 self.setAv_Bt.configure(state=NORMAL)

 self.setAO_Bt.configure(state=NORMAL)

 self.setZe_Bt.configure(state=NORMAL)

 def disableButtons(self):

 self.toggleMeasMode_Bt.configure(state=DISABLED)

 self.spec_Bt.configure(state=DISABLED, text='Start Spectrum', font=('Helvatical bold',10))

 self.meas_Bt.configure(state=DISABLED, text='Start Measurement', font=('Helvatical bold',10))

 self.intT_Bt.configure(state=DISABLED)

 self.setCh_Bt.configure(state=DISABLED)

 self.setAv_Bt.configure(state=DISABLED)

 self.setAO_Bt.configure(state=DISABLED)

 self.setZe_Bt.configure(state=DISABLED)

49

3 Firmware changelog

v. 6.4

-onboard "follow peak" function added.

-fixed corrupt spectra while changing integration time

v. 6.5

-added internal reference FBG measurement

-added reference compensation

v. 6.6

-changed "LED" command; LED current is fixed now. See chapter 1.3 for details.

-optimized reference compensation

v. 6.7

-optimized hardware parameters

v. 6.8

-changed internal reference compensation algorithm

-exchanged current wavelength compensation number by measured reference FBG wavelength (see

 chapter 1.2 for details) in transmitted data. As both versions use the same 32bit number, there is no

 need to change data readout unless this specific values was used before.

-changed thermoelastic constant from 8.2E-6 to 8.65E-6

v 6.9

-increased number of onboard channels from 24 to 32

-optimized channel border resolution

-added onboard FBG calculations (strain, temperature, zeroing)

-P> command now initiates transmission of either wavelength/amplitude like before (standard

 mode) or strain/temperature (in onboard calculation mode)

-optional external UART: Baudrate can be set

-optional external UART: amount of transmitted data can be chosen (nothing, only basic information,

 peak information, complete spectra). USB is still sending in parallel to the UART.

-streaming mode added: it is now possible to endlessly send values as soon as they are measured

 (and previous data transmission is completed) without the need of initiating this by s> and P>

 commands of the host computer

-in streaming mode, the microcontroller will wait until transmission of both UART and USB is finished

-eliminated the transmission of one supernumerous channel (containing meaningless numbers)

 between the results of the last peak detection channel and the temperature/reference FBG

 wavelength information in the P> command answer.

-added autostart switch, either immeadiately starting data streaming or just switching light source

 (for warm up) and internal measurements on after connecting to power source

-enabled to save current state (onboard calculation mode, onboard calculation channel details, zero

 values, UART settings, streaming mode, autostart mode) to microcontroller's flash memory. Beware

 of the maximum number of write processes described in chapter 1.11!

v 7.0

-added center-of-gravity onboard peak detection

50

-increased internal temperature sensor update frequency

v 7.1

-supports multi-fiber FiSpec systems

-pixel binning removed

-added periodic darkframe updates

-changed standard value of maximum follow peak value (before: 0.4* channel width; now: 0.25*)

-supports multiplexed systems

-readout of set channel border values possible

-restricted channel width to 200 pixels

-supports second reference FBG

v 7.2

-internal temperature sensor value averaging optimized

-compensation: introduced slope value transmission. transmission=(value-1)*1E6

v 8.0

-optimized periodic darkframe updates

-future firmware updates via USB possible

v 8.1

-optimized reference wavelength smoothening

-new experimental peak detection mode: spectral FIR-filtering

-fixed: from version 7.1 to 8.0 maximum follow peak channel shift value was not used

v 8.2

-in active reference compensation mode/deactivated follow peak mode: channel borders now shift

 according to reference FBG compensation offset

-fixed: microcontroller was no longer accessible after receiving more than 30 characters without

 termination character “>”

v 8.3

-thermoelastic constants (separate values for reference FBGs and sensor FBGs possible) and

 optoelastic constant can now be changed via serial commands.

-further smoothening of reference FBG signal

v 8.4

-in follow peak mode: channel width internally reduced to 60%, to prevent neighboring peaks

 interfering during significant temperature/strain changes. After switching follow peak mode off, the

 original channel width is being restored.

-reference FBG correction equation changed

-fixed: follow peak function (in ver. 8.3: not permanently active when desired so)

-some stability fixes

-automatically detecting channels in reference FBG channels range. Since now: when zeroing the

 channels, T0 is set to the device temperature.

-follow peak function optimized: the channel borders will follow the peak only when the signal

 quality is sufficient (preventing erroneous channel changes e.g. when no sensor fiber is attached).

51

v8.5

-changed internal reference compensation calculation; now also two reference FBG supported

-TEK and OEK now saved in flash memory.

-Protocol changed: setting TEK/OEK by sending value/1000 instead of value/10000

-added: sectionwise defined TEK values (up to 10 supporting points) for onboard calculations possible

-now negative values for T0 possible (-273.15°C...+327.0°C)

v8.6

-fixed: clipping of spectra (max. value: 51000) when using averaging > 1

-fixed: time constant very high when using averaging > 1

-protocol change in transferred peak / spectra arrays: offset*10000 instead of offset*1000

v 8.7

-code optimizations

v8.8

-added: setting TEK constant for every single fiber in multi-fiber-systems now possible

v8.9

-added: error code (fiber breakage / signal quality of each FBG channel) now calculated on board

-code optimizations

v9.0

-added: approximation of on board TEK value by cubic polynomial possible

-added: calibration ID can be saved in the device's flash memory

v9.1

-code optimizations

v9.2

-fixed (only applies to X1-devices): errors in TeKPs> command (cubic polynomial parameters)

v9.3

-added: onboard auto-optimize function

-fixed: corrupt spectra in UART mode 4 (used e.g. in multi-fiber-devices, since firmware v8.9)

-added: multiplex number can now be set and saved in flash memory for devices without physical ID

 pins

-optimized startup behaviour of internal temperature sensor's signal

v9.4

- fixed: commands OBseT0/OBsWL0/OBsTK/OBsTyp were ignored if respective channel number <

 overall channel number of first fiber

-optimized rounding of channel borders to nearest pixel

-added: new setting that defines if reference compensation shall be activated at device startup

v9.5

-replaced sectionwise TEK interpolation mode (mode 1) by global cubic polynomial TEK calculation

-global TEK interpolation parameters for up to four different fiber types can be stored in EEPROM

52

v9.6

-fixed: Auto-optimization algorithm sometimes did not converge for intense signals (i.e., X150), and

 answers contained invalid numbers for integration time / averages

-Auto-optimization further optimized

-signal quality error bits (e?> command) now also set at intense, clipping signals (intensity > 63000)

- in peak following mode, when error bit is set: channel borders now remain unaltered at their last

 valid position (before: reset them immediately to their original position like in "not-follow-peak

 case")

v9.7

-optimized: slight temperature errors occuring after zeroing if “TV” polynomial is not exactly the

 reverse function of the “VT” polynomial.

v9.8

-fixed: follow peak function sometimes ceased following when using narrow channels or small follow

 peak limits values (set by "PNg,x>" command)

v9.9

-general code optimizations

-fixed: KalID> command returned error code array instead of calibration number (only UART

 transmission affected)

-center of gravity peak detection mode: optimized accuracy if peaks are near the channel borders

-fixed: in center of gravity peak detection mode, peak amplitudes were slightly off since ver. 9.8.

 (peak position accuracy was not affected, though)

-fixed: with periodic darkframe update enabled and dark frame subtraction disabled, the darkframes

 were subtracted nonetheless (optimization of ADCC,x> and ADBA,x,y,z> commands)

v10.0

-fixed: since v9.3 devices do not set the ID pins correctly after saving EEPROM in stacked state

-increased internal measurement frequency from 220Hz to 300Hz

-saving streaming interface selection to EEPROM

-fixed: instabilities when channel borders nearing pixel number boundaries with "follow peak" active

-protocol changed: removed different UART transmission modes; instead now answers are sent to

 the interface that the respective command came from (USB or UART). Therefore:

- UARTse,x> command obsolete

- #UARTModus_999" instead of #UARTModus_1...4" in p?> command answer string

-fixed: in four-fiber port systems quickly setting many FBG channels at once resulted in corrupted

 channel borders

-general code optimizations

v10.1

-added: onboard Edge-FBG measurement functionality

v10.2

- For speed reasons, Edge calculations are now only executed when activated before (EBs,x>

 command added)

53

v10.3

- optimized linearization of peak detection (before: slight wavelength nonlinearities appeared when

 peaks crossed pixel borders)

- removed first derivative peak detection mode (command PeM,x> obsolete)

- supports devices with 1, 2, 3 and 4 fiber ports (before: only 1 and 4 fiber ports possible)

v10.4

- error bits are now also set in peak following mode if peak following is temporarily disabled (e.g. due

 to bad signal quality or extreme wavelength jumps)

- e?> command: fifth 32 bit number (until now reserved for future use) now contains more specific

 real time information about what kind of error (S/N ratio, over exposure, peak following, or

 reference FBG error) occurs at each fiber port in at least one peak detection channel.

- automatic periodic dark frame update (ADBA,x,y,z> command): for averages>1 the measured

 dark spectra are now averaged like normal spectra (until now: only single, not averaged frames,

 regardless of active averaging setting) before being low pass filtered.

- internal threshold for error detection adjusted for reference FBG channels

