

900 Calle Plano, Suite K Camarillo, CA 93012 USA T +1-805-389-6600 F +1-805-389-6605 www.micronor.com

Declaration of Conformity

We

Micronor Inc. 900 Calle Plano, Suite K, Camarillo, CA 93012, USA

declare that the product

Fiber Optic Incremental Encoder System	Item Code(s)
Controller Module	MR330-1
Sensors	MR332, MR338

Country of Origin: Camarillo, CA USA

to which this declaration relates in conformity with the following standards, normative documents and/or customer requirements:

Requirement	MR330-1 Controller	MR330 Sensors	
1. LED Safety	Class 1 LED device per IEC 60825	Exempt	
2. ATEX Directive	Sensor and Controller are exempt: No	t considered to have an	
	independent source of ignition.		
	(a) Optical sources which meet th	ne Class I limits are considered	
		ith an EPL of Mb, Gb, Gc, Db or Dc	
	as per Clause 1 (3) of IEC 60079-28:2015 Ed 2.		
	IECEx GB/CML/ExTR 16.0070/00, R1198B/00, Evaluated by Notified		
	Body 2503, Certification Management Limited, Unit 1 Newport Business		
	Park, New Port Road, Ellesmere Port, CH65 4LZ, United Kingdom		
3. Low Voltage	Exempt	Exempt	
Directive			
4. EMC Directive	Exempt	Exempt	
5. CE Mark	Applicable	Applicable	

Place: Camarillo, CA, USA Date of Issue: 1-August-2016

Dennis Horwitz Micronor Inc. Vice President, Sales and Marketing dennis@micronor.com

Ref: G:\MR330 Doc RevC May-2016\MICRONOR_98-0330-20_MR330 Declaration of Conformity_RevC_released_1-August-2016.docx

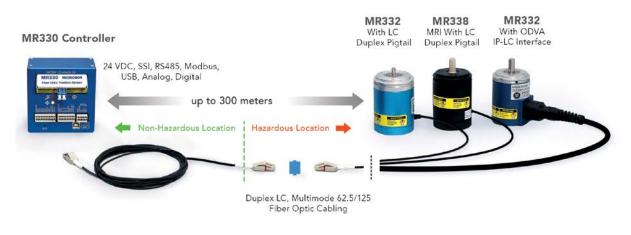
Product Assessment Report

Product Description:	MR330 series Fiber Optic Absolute Encoder system
Affected Products:	The following is referred to as the Controller in this document: MR330-1 Controller
	The following are referred to as the Sensor in this document: MR332 series Size 58mm Shafted Sensor MR338 series Size 58mm MRI Safe Shafted Sensor
Document: Revision: Dated: Number of Pages:	98-0330-20 C 1-August-2016 16

Revision History

Revision	Date	Description
A	2-Dec-2012	Original release
В	8-May-2013	Added MR338 Sensor
С	1-Aug-2016	Updated assessment per latest 2014 ATEX/EMC/LV Directives and IEC 60078-28 Ed.2, DNH/CML

Assessment Outline


- 1. Product Overview
- 2. Risk Assessment by Category
 - 2.1. LED Safety
 - 2.2. Explosive Atmospheres
 - 2.3. ATEX Directive
 - 2.4. Operating Guidance
 - 2.5. Low Voltage Directive
 - 2.6. EMC Directive
 - 2.7. Control of Production
 - 2.8. CE Mark
- 3. Product Marking
 - 3.1. MR330 Controller
 - 3.2. MR330 Sensors
- 4. User Obligations

Appendix A. Bearing Life Analysis

Appendix B. Terms and Acronyms

1. Product Overview

The MR330 series Fiber Optic Incremental Rotary Encoder System consists of a non-electric, passive Sensor and active Controller which are connected via a duplex multimode fiber optic link:

2. Risk Assessment By Category

This report constitutes a self-assessment executed by Micronor Inc. and is not a Certificate of Compliance. As per IEC 60825, the term laser is interchangeable with LED and for the purpose of this document the latter is used.

2.1 LED Safety

References:

- 1. IEC 60825-1, <u>Safety of laser products Part 1: Equipment classification, requirements and user's guide</u>, Edition 3.0, May 2014
- IEC 60825-2, <u>Safety of laser products Part 2: Safety of optical fibre communication systems (OFCS)</u>, Edition 2004+A2, October 2010
- 3. FDA, <u>Code of Federal Regulations (CFR), Title 21, Chapter 1 Food and Drug Administration Department</u> of <u>Health and Human Services, Subchapter J-Radiological Health</u>, Parts 1000-1050
- 4. Micronor 98-0330-21, MR330 Inherent Safety Analysis, March 2016

Summary:

The MR330 encoder system meets Class 1 LED safety requirements per IEC 60825-1 which is recognized as a harmonized standard by both the U.S. Food and Drug Administration (FDA) and European Union. Since the optical radiation originates from the MR330 Controller, the LED safety class designation and product labeling requirements apply only to the MR330 Controllers as the "active" optoelectronic half of the MR330 system.

As an LED source, the MR330 Controller is exempt from annual FDA/CDRH production reports.

Analysis:

The following table summarizes the evaluation results and applicable product markings for the MR330 Controller. As passive devices, the MR330 Sensors do not require any LED safety markings.

	Controller Model	
Parameters	MR330	
Wavelength/Source Type	850 nm / LED	
	NOTE: All power levels are measured directly at the fiber tip.	
Maximum Output Power in	0.032mW	
Normal Operation		
IEC Class 1 Limit	From IEC 60825-2, Table D.1:	
	3.88mW	
Classification	Class I (Not Harmful)	
Product Markings	Serial Number and Date of Manufacture	
	IEC 60825-1 Labeling Requirement:	
	No label required for Class 1 products	

2.2 Explosive Atmospheres

References:

- 1. ATEX Directive 2014/34/EU, <u>Directive 2014/34/EU of the European Parliament and the Council of 26</u> <u>February 2014 on the harmonization of the laws of the Member States relating to equipment and protective</u> <u>systems intended for use in potentially explosive atmospheres</u>.
- 2. IEC 60079-0, Explosive Atmospheres Part O Equipment General Requirements, Edition 5, 2007
- 3. IEC 60079-28, <u>Explosive Atmospheres Part 28 : Protection of equipment and transmission systems</u> <u>using optical radiation</u>, Edition 2, 2015
- IECEx Test Report GB/CML/ExTR 16.0070/00 (CML Report R1198B/00), <u>Evaluation of MR330 Series</u> <u>Controller and Sensors</u>, July 2016. NOTE: Contact Micronor for copy of full IECEx test report, Micronor document 98-0330-22.
- 5. National Fire Protection Association, NFPA 70, *National Electric Code (NEC)*, 2014.
- 6. Micronor 98-0330-21, MR330 Inherent Safety Analysis, March 2016

Summary:

Per IECEx Test Report, the MR330 optical radiation output meets Class 1 requirements and is therefore considered inherently safe and exempt from the scope of IEC 60079-28. Clause 1(3) of IEC 60079-28:2015 states that optical sources which meet the limits of Class 1 LED, as defined in IEC 60825-1, are suitable for use in EPL Mb/Gb/Gc/Db/Dc applications.

The NEC does not address fiber optic sensors and is exempt.

The following tables summarize assessments and applicable markings for the MR330 Controller and Sensors:

	Ex Classification		
Parameters	MR330 Controller		
Environmental Rating	0° to +45° C, 25-95% RH		
Classification	Controller shall be installed in non-hazardous location only		
ATEX	Optical sources which meet the Class I limits are considered suitable for		
	use in locations with an EPL of Mb, Gb, Gc, Db or Dc as per Clause 1(3) of		
	IEC 60079-28:2015 Ed 2.		
	Consult IECEx Test Report (ExTR) GB/CML/ExTR 16.0070/00		
IEC Ex	Optical sources which meet the Class I limits are considered suitable for		
	use in locations with an EPL of Mb, Gb, Gc, Db or Dc as per Clause 1(3) of		
	IEC 60079-28:2015 Ed 2		
	Consult IECEx Test Report (ExTR) GB/CML/ExTR 16.0070/00		
NEC	Exempt		
Product Markings	For installation in non-hazardous location only		
	$0^{\circ}C \le Ta \le +45^{\circ}C$		

Parameters	Ex Classification			
Farameters	MR330 series Sensors			
Environmental Rating	Standard:-40° C to +80° C, 0-95% RH			
Explosive Environments	Sensor can be installed and operated in			
	hazardous locations with an EPL of Mb, Gb, Gc, Db or Dc (or equivalent) -			
	mines, gaseous and dust			
ATEX	Considered suitable for installation and use in locations with a required			
	EPL of Mb, Gb, Gc, Db or Dc as long as the sensor is used with the MR330			
	Controller (source)			
	Consult IECEx Test Report (ExTR) GB/CML/ExTR 16.0070/00			
IEC Ex	Considered suitable for installation and use in locations with a required			
	EPL of Mb, Gb, Gc, Db or Dc as long as the sensor is used with the MR330			
	Controller (source)			
	Consult IECEx Test Report (ExTR) GB/CML/ExTR 16.0070/00			
NEC	Exempt			
Product Markings	Simple Mechanical Device			
	Add "-40°C \leq Ta \leq +80°C"			

Analysis:

Certification Management Ltd (CMRL, a Notified Body) evaluated the MR330 encoder system and verified that the MR330 Controller (as source of optical radiation) is a Class 1 LED source and not considered a source of ignition per Section 1 (3) of IEC 60079-28 Ed.2. The MR330 encoder and controller system are suitable for use in EPL Mb/Gb/Gc/Db/Dc applications.

The following table summarizes results of source failure mode assessment tests performed on the LED driver to determine the maximum power output. The measured peak power is then compared to the safe optical power limits for various EPL applications. In all cases, the maximum output of the Controller falls within all EPL limits.

	Controller Model	
Parameters	MR330	
Wavelength/Source Type	850nm / LED	
	NOTE: All power levels are measured directly at the fiber tip.	
Maximum Peak Power	P=0.915mW	
	For purposes of this assessment, the output is treated as continuous since	
	the average power would be 0.	
EPL Ma/Mb Limit	150mW	
	(Per Clause 6.6.2 of IEC 60079-0 and Table 2 of IEC 60079-28)	
EPL Da/Db/Dc Limit	35mW	
	(Per Clause 6.6.2 of IEC 60079-0 and Table 3 of IEC 60079-28)	
Safe Optical Power Limit	15mW	
For All Atmospheres	(Per Table 2 of IEC 60079-28)	

2.3 ATEX Directive

Reference:

- 1. ATEX Directive 2014/34/EU, <u>Directive 2014/34/EU of the European Parliament and the Council of 26</u> <u>February 2014 on the harmonization of the laws of the Member States relating to equipment and protective</u> <u>systems intended for use in potentially explosive atmospheres</u>.
- IECEx Test Report GB/CML/ExTR 16.0070/00 (CML Report R1198B/00), <u>Evaluation of MR330 Series</u> <u>Controller and Sensors</u>, July 2016. NOTE: Contact Micronor for copy of full IECEx test report, Micronor document 98-0330-22.

Summary:

Per the IECEx Test Report, the MR330 encoder system has been evaluated and verified that the MR330 Controller (as source of optical radiation, categorized Class 1) is not considered to have an independent source of ignition per Section 1 (3) of IEC 60079-28. The MR330 encoder and controller system are suitable for safe use in EPL Mb/Gb/Gc/Db/Dc applications without further consideration.

Analysis:

Per Directive 2014/34/EU Article 1 Section 4, the MR330 series Sensors are exempt as follows: "...equipment and protective systems where the explosion hazard results exclusively from the presence of explosive substances or unstable chemical substances". The Sensors are entirely mechanical, non-electrical, passive optical devices which do not represent an explosive hazard by themselves.

As the source of optical radiation for the sensor system, the MR330 Controller would be subject to IEC 60079-28 which defines optical radiation requirements for explosive atmospheres. However, Class 1 LED devices are categorically exempted from the standard per Section 1 (3) and suitable for safe use in EPL Mb, Gb, Gc, Db, and Dc applications without further consideration.

The Controller shall be considered a "component", integrated with the user's control system and shall be installed in a non-hazardous area. The Controller may be mounted inside a suitably-certified enclosure (such as an explosion proof enclosure, flameproof enclosure or in a purged/pressurized system) if required by the application. The user is responsible for any additional system design, installation and certifications for the overall assembly.

The Sensor and Controller shall be considered a "system", as neither provides an autonomous function. The Ex certification of a complete motor drive, actuator or similar electromechanical motion system is the responsibility of the system integrator. Mechanical design, load analysis and establishment of system maintenance/inspection procedures are a critical part of any electromechanical or similar motion system design operating in a harsh or hazardous environment. All have a direct impact on Sensor/Encoder reliability. Section 4 (see Bearings) and the bearing life analysis of Appendix B highlight the mechanical design responsibilities of the user.

2.4 Operating Guidance

Summary:

In normal operation, the MR330 series Sensor does not present a hazard when operated within the environmental specifications of a particular model. As a mechanical device operating in a hazardous location, the engineer should be conservative in their design and the operator follow the system's inspection and maintenance procedures. This section outlines potential mechanical failure modes of the Sensor and methods for their prevention.

Analysis:

The MR330 Controller shall always be mounted in non-hazardous location or housed in a suitably-certified enclosure as part of a larger Ex assembly.

The MR330 series Sensors can be mounted and operated in the specified hazardous and non-hazardous areas. As a mechanically rotating component, care must be taken to not overload the bearings which can create excessive surface heat which could potentially ignite an explosive environment. The user shall be aware of these potential failure modes and recommended operation:

P	otential Ignition So	urce	Measures applied to prevent the	Ignition protection
Normal Operation	Expected Malfunction	Rare Malfunction	source becoming effective	used (To be determined by the integrator or user)
	Uneven wear in bearings can result in frictional		Detailed calculations of bearing life and system MTBF can be found in APPENDIX A, Bearing Life Analysis.	EN 13463-1 (User Instructions) And

neating or			
heating or mechanical sparking		Summary: All bearings are lubricated by grease which is captured within the seals. MTBF calculations were performed at selected load conditions and RPM conditions. In APPENDIX A, we provide MTBF calculations at various speeds and shaft loads.	EN-13463-5 (Constructional Safety "c")
		These numbers can vary with application, environmental factors, RPM and shaft load conditions. For high reliability applications, it is conservatively recommended that the unit be replaced after 10 years of continuous operation.	
	Bearing Failure or Loss of Lubrication can result in frictional heating or mechanical sparking	 of continuous operation. This is a generic discussion of bearing failure applicable to any and all equipment incorporating bearings. Summary: Generically, bearing failure usually occurs when excessive loads (combinations of radial, axial, RPM, temperature, shock, vibration, etc.) combine to cause premature bearing wear and excessive temperature rise approaching MIE. Any temperature can then be compared to normal bearing operation where the typical temperature rise is 10-50°F above ambient depending on the operating conditions. Bearing failure is rarely a catastrophic event but a gradual deterioration. For a high reliability application, the user should consider implementing one or more of the following: I. If motor overrun could occur, the user should consider the use of torque limiting safety couplings. A temperature sensor could be placed on the encoder housing closest to the bearings to monitor surface temperature relative to MIE. The encoder should be examined periodically for abnormally high surface temperatures or physical signs of abnormal noise or discoloration. 	EN 13463-1 (User Instructions) and EN-13463-6 (Control of Ignition Sources "b", if monitoring is fitted)

2.5 Low Voltage Directive

References:

1. Low Voltage Directive, <u>Directive 2014/35/EU of the European Parliament and of the Council of 26</u> <u>February 2014 on the harmonization of the laws of the Member States relating to making available on the</u> <u>market of electrical equipment designed for use within certain voltage limits</u>, 2014

Summary:

	Applicable	Product Models		
	Directives	MR330 Controller	All MR330 Sensors	
Low Volta	ge Directive	Exempt	Exempt	

Analysis:

Per Article 1 of the Low Voltage Directive, "This Directive shall apply to electrical equipment designed for use with a voltage rating of between 50 and 1,000 V for alternating current and between 75 and 1,500V for direct current, other than the equipment and phenomena listed in Annex II." The MR330 Controller operates up to maximum 32V DC and is not covered by the equipment list in Annex II. Therefore, the Controller is exempt.

The MR330 Sensors are non-electrical, passive devices and exempt from the Low Voltage Directive.

2.6 Electromagnetic Compatibility (EMC)

References:

1. EMC Directive, <u>Directive 2014/30/EU of the European Parliament and of the Council of 26 February 2014</u> on the harmonization of the laws of the Member States relating to electromagnetic compatibility, 2014.

Summary:

Applicable	Product Models		
Directives	MR330 Controller	All MR330 Series Sensors	
EMC Directive	Exempt	Exempt	

Analysis:

The MR330 Controller is a component and therefore exempt from the EMC Directive. The user shall follow appropriate grounding and shielding practices when integrating the Controller into the manufacturer's system.

MR330 Sensors are non-electrical, passive devices and, therefore, exempt from the EMC Directive.

2.7 Control of Production

Summary:

In addition to the technical requirements covered in this document, the fixing of the European Commission CE mark also requires all products are produced in a controlled and reproducible manner. In satisfaction of this requirement, Micronor maintains a Quality System in which the MR330 series products are governed by a controlled set of bill of materials as well as documented assembly and test procedures.

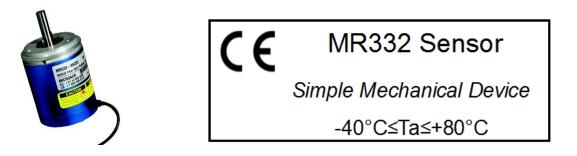
Analysis:

Micronor Quality Manual 94-QMS-001 No further analysis required.

2.8 **CE Mark**

Summary and Analysis: The Sensor and Controller meet applicable EC requirements and qualify for CE marking.

3. Product Markings


The following are samples of product labels in compliance with Section 2.

3.1 MR330 Controller

3.2 MR330 Sensors

All MR330 series Sensors will be labeled per example show for MR332 below.

4. User Obligations

- Do not look into the optical port of the Controller or any optical connectors with the aid of any optical magnification device.
- Always clean optical connections before reconnecting
- In hazardous environments, always operate the Sensors under conservative mechanical bearing loads.
- Power supply to Controller shall be current limited to 200mA or less

###

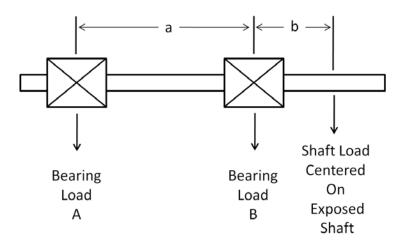
APPENDIX A: Bearing Life Analysis

Reference:

ANSI/AFBMA Std 9-1990, Load Ratings and Fatigue Life for Ball Bearings

Background (excerpt from ANSI/AFBMA 9-1990):

Bearing life is defined as the length of time, or the number of revolutions, until a fatigue spall of a specific size develops. This life depends on many different factors such as loading, speed, lubrication, fitting, setting, operating temperature, contamination, maintenance, plus many other environmental factors. Due to all these factors, the life of an individual bearing is impossible to predict precisely.


ANSI/AFBMA Std 9-1990 provides a common industry basis for estimating bearing life. L10 life is the life that 90 percent of a group of apparently identical bearings will complete or exceed before a permanent deformation of 0.0001 of the rolling diameter. General industry experience shows that a permanent deformation of this size, at the center of the most heavily loaded ball/raceway contact, can be tolerated in most bearing applications without the subsequent bearing operation being impaired. The basic static load rating is, therefore, given a magnitude such that approximately this deformation occurs when the static equivalent load is equal to the load rating.

		$L_{10} = (C_r / P_r)^3$
Where	L ₁₀ =	Basic rating life, in million revolutions
	$C_{r} =$	Basic dynamic radial load rating, N (lbs)
	P _{r=}	Dynamic equivalent load rating, N (lbs)

For many applications, it may be desirable to calculate life for a different reliability and/or for special bearing properties and operating conditions which deviate from the conventional in such a way that it is justified to take their influence into special consideration. The adjusted rating life, Ln, i.e. the basic rating life adjusted for a reliability of (100-n) % for special bearing properties and for specific operating conditions is given by:

		$L_{na} = a_1 a_2 a_3 L_{10}$
Where	L _{na =}	Adjusted life, in million revolutions
		L _{3 =} 97% reliability
		$L_{1} = 99\%$ reliability
	a _{1 =}	Life adjustment factor for bearing reliability
		For calculating L_3 , $a_1 = 0.44$
		For calculating L_1 , $a_1 = 0.21$
	a _{2 =}	Life adjustment factor for bearing
		materials and processing
	a _{3 =}	Life adjustment factor for bearing
		operating conditions
	$L_{10} =$	Basic rating life, hr

The model for calculating bearing load is as follows:

Load on Front Bearing (B) = (Shaft Load * (a + b)) / a

Load on Rear Bearing (A) = (Shaft Load * b) / a

Reference data for bearings used on MR330 series Sensors:

Sensor Model	Bearing Type	C _r (Static) N (lbf)	C _{or} Dynamic N (lbf)	Sensor RPM Specs
MR332	SSR-1900 (Qty 2)	1,245 N (280 lbf)	2,580 N (580 lbf)	2500 (Electrical-Max Accuracy)
				6500 (Mechanical)
MR338	6900-LL/T9/C3 (Qty 2)	1,030 N (230 lbf)	2,155 N (485 lbf)	2500 (Electrical-Max Accuracy)
				6500 (Mechanical)

Maximum shaft load specifications for MR330 series Sensors:

Sensor Model	Maximum Radial Shaft Load	Maximum Axial Shaft Load	Maximum Electrical RPM
MR332	80 N	40 N	2,500 RPM
MR338	60 N	30 N	2,500 RPM

Specifications subject to change without notice

Reliability Software Used

To calculate System MTBF, Weibull reliability analysis was applied using **WEIBULL-EASE 12.2** software (www.applicationsresearch.com). First, the **BEARING CALCULATIONS** function (see sample screen below) was used to calculate L_{10} as well as the Weibull Characteristic Life – for each bearing. For calculating the equivalent Radial load, the worst case factors were used (X=0.56 and Y=2.3). Next (for each bearing), the corresponding Weibull Characteristic Life with default Beta Shape Factor =2 is then transferred as a failure mode to the **CREATE/LOAD RELIABILITY MODEL** function. With the two bearings (modes) entered, the software calculates both System MTBF and Weibull MTBF. Sample screens for the MR3332 bearing analysis are shown below.

	MODE	TLLL.										DONE	
SAMPLE MODE	Mode	Mode	Name	Shape Fa Beta		Characteristic Life, Eta	Offset, Gamma	Sample: Failed	s	Co	mment		+
LIST	1	MR332-Y-I	F-2500RP	2 2810268		2810268		20					
	2	MR332-Y-I	R-2500RP	2		3722827		20					•
OPEN SAVED	3												•
MODE LIST	4												•
	5								_				
ASS'Y NAME	6								_				
00RPM-R10-A44	8								_				
	9								_				⊻
	10								_				
SAVE AS NEW MODE LIST	-	OLVE ABC	= 19879		Sys	tem Median = 18 Discussio	867118.17	SYSTE	M EQUI	RPM-R10-/ C			
RETRIEVE						Confidence Limit			·				
SAVED MODE	% Rely	% Fail	* 50% C			(Change Here)		90	% Fail	90 % Conf	* 50% Conf	10 % Conf	
	99	1	22490				Re-Solv	e	1	70622	224973	702487	
REPORT	98	2 319080.30 5 508257.20		Shape Factor = 2				2	130519	318948	763964		
	90	10	72817		C	haracteristic Life =	224317	2	-	276597	508172	914954 1113640	
1	80	20	105972			Offset Factor =	-9.74		10	466557	728269	1113640	
CLEAR	70	30	133974			Weibull MTTF =	1987996	.68	20		1059778		
	60	40	160315			Correlation =	1.0000		30	1023907	1339800	1714281	
RETURN TO WEIBULL	50	50	186739		C	Other Values			40	1265154	1603338	1984378	
THEODEL	40	60	214714	4.00		Units of U	Ise =		50	1504586	1867620	2260352	
	30	70	246123	9.00		% Fai			60	1753618	2147243	2557937	
	20	80	284568	7.00					70	2025989	2461282	2899666	
TRANSFER TO	10	90	340352	3.00		% Reliab	inty =		80	2344894	2845628	3330688	
TRANSFER TO DEMAND			3882420	0.00		* The Weibull line			90	2766760	3403564	3988760	
	5	95	3002421							3072112			
DEMAND		95 98	4436379	9.00		confidence. By defi most probal		he	95 98	3336000	3882096 4436130	4593473 5350307	

MR332 Bearing Life MTTF Analysis at 10% Max Axial/4lbf Radial Shaft Load

D BEARING L	FE CALCUL	ATIONS							- · ×	
<u>BEARI</u>	NG LIFE	CAL	CULAT	ION	<u>s</u>					
EXAMPLE	DATA S	OLVE	OPEN		SAVE	CLE/	AR	REPORT	RETURN	
-	Title or Loca		2-Y-F-250	ORPM-	R10-A44					
	Shape Facto		2				Chang	Refs		
ISO Standard			1000000		Revs(ref)	_	Ball bearing ISO			
Load	d Modifier Ex	ponent =	3			Ball bearing Standard refer				
Basic	Dynamic Ca	pacity * =	580)	lbf		1,000,0	000 revolut	ions	
	Static Loa	d Limit =	280)	lbf			tandard ref		
	Actu	al Load =	11.25	56	lbf			f 3000 hou		
	RPM at abo	ve load =	250	0	rev/min	rpm	n, or, 90	000,000 n	evolutions.	
Mak	e certain the	actual lo	ad is less th	an the	static load					
							_		-	
L10 Li	fe at above L	oad and	RPM = 1	368285	954629 F	levs - or -		912193	Hours	
	Weibull Characteristic for this applica							- or - 2810268 Hours		
		M	TBF = 3	736008	802577 F	Revs - or -	- 24	190533.94	Hours	
						-				
R%	F%		UTIONS		OURS			2%	HOURS	
99	1		986372		81733					
98	2		143368	8 399441					Input R% or	
95	5		536214	8214 636470				ours, the ot ulated as v	her will be ou hit "Enter"	
90	10		8954629				Garo			
80	20		7497338	1327517						
50	50	35095	5292234	23	339702					
					eibull Distri as Mode #		2 [Assign		

MR332 Front Bearing Analysis at 10% Radial and 4 lbf Axial Load (Mode 1)

		OLVE	OPEN	SAV	E	CLEAR	REPO	RT	RETURN
					_				
-	Title or Loca			00RPM-R10	-A4				
	Shape Facto		2			С	hange to Ro	ller Ref	is
ISO Standar			10000	00 Rev	i(ref)) Ball bearing ISO			
Load	d Modifier Ex	ponent =	3			s	tandard refe		;
Basic	Dynamic Ca	pacity * =	580) Ibf		1,	000,000 rev	olution	5
	Static Loa	d Limit =	280) Ibf		Ro	ller standar	d refere	nce
	Actu	al Load =	10.24	85 Ibf			ists of 3000		
	RPM at abo	ve load =	250	0 rev/	min	rpm, o	or, 90,000,0	00 revo	lutions.
Mak	e certain the	actual loa	d is less th	an the statio	load				
						_			
L10 Li	fe at above L	oad and F	RPM = 18	8126045619	4 Re	evs - or -	120840	3	Hours
	Weibull Char	racteristic l	Life = 58	5842410000	0 R	evs - or - [372282	7	Hours
	for th	is applica				L			
		MT	BF = 4	9491755638	89 Re	evs - or -	3299267	.46	Hours
R%	F%	REVOL	UTIONS	HOURS		J	R%	HC	OURS
99	1	559827	773743	3 373218] [
	2	793722	290096	529149			Other Value		
98	-	126472	010214	010214 843147			Hours, the calculated		
98 95	5		459404	4 1208403]	carculated	as you r	in citer
	5 10	181260	400194						
95	-		765370	175859	2				

MR332 Rear Bearing Analysis at 10% Radial Load and 4 lbf Axial Load (Mode 2)

MR332 Sensor Bearing Analysis

MR332 Sensor analysis was performed based on the Ø10mm shaft with shaft seal option and operated at 2500 RPM ("electrical" limit for full 13-bit accuracy). Load conditions used in the calculation represent a percentage of the maximum load specification where Max. Radial=80N (18 lbf) and Max. Axial=40N (9 lbf). The direct radial shaft load is assumed positioned at the middle of the exposed shaft length.

For long term reliability, we recommend an operating condition based on 10% of the maximum Axial and Radial Shaft Load Specification.

Analysis #1 at 2500 RPM and Radial load=10% and Axial load=44% (we assume minimum 4 lbf preload)

• System MTBF is 1.988 x 10⁶ hours (equivalent to 226.9 years)

Analysis #2 at 2500 RPM and Radial load=50% and Axial load=50%

• System MTBF is 3.720 x 10⁵ hours (equivalent to 42.5 years)

Analysis #3 at 2500 RPM and Radial load=100% and Axial load=100%

• System MTBF is 4.650 x 104 hours (equivalent to 5.3 years)

MR338 Sensor Bearing Analysis

MR338 Sensor analysis was performed based on the Ø10mm shaft with shaft seal option and operated at 1000 RPM. Load conditions used in the calculation represent a percentage of the maximum load specification where Max. Radial=60N (13.5 lbf) and Max. Axial=30N (6.7 lbf). The direct radial shaft load is assumed positioned at the middle of the exposed shaft length.

For long term reliability, we recommend an operating condition based on 10% of the maximum Axial and Radial Shaft Load Specification.

Analysis #1 at 1000 RPM and Radial load=10% and Axial load=60% (assume minimum 4 lbf preload)

• System MTBF is 3.057 x 10⁶ hours (equivalent to 349.0 years)

Analysis #2 at 1000 RPM and Radial load=50% and Axial load=60% (assume minimum 4lbf preload)
System MTBF is 8.506 x 10⁵ hours (equivalent to 97.1 years)

Analysis #3 at 1000 RPM and Radial load=100% and Axial load=100%

• System MTBF is 1.421 x 10⁵ hours (equivalent to 16.2 years)

###

APPENDIX B: Terms and Acronyms

ATEX	Atmosphères Explosibles (Explosive Atmosphere). By ratifying the guideline 94/9/EC on 23 March 1994 the European Parliament and the Council of the European Union started to harmonize the different national legislative provisions for the operation in areas with potentially explosive atmospheres. As an acronym, ATEX generally refers to the equipment regulations and standards established by EU directive 94/9/EC.
EN	European Norm. European standards maintained by CEN (European Committee for Standardization), CENELEC (European Committee for Electrotechnical Standardization) and ETSI (European Telecommunications Standards Institute):
EPL	Equipment Protection Level. The level of protection assigned to equipment based on its risk of becoming a source of ignition, and distinguishing the differences between explosive gas atmospheres, explosive dust atmospheres, and the explosive atmospheres which may exist in coal mines. Atmosphere prefixes: M=Mines, G=Gas, D=Dust. Levels of Protection suffix: a,b,c.
FCC	Federal Communications Commission (U.S. Government)
FDA	Food and Drug Administration (U.S. Government)
IEC	International Electrotechnical Commission. IEC is the international standards commission that prepares and publishes all standards for electrical, electronic and related technologies. The worldwide organization promotes international unification of standards or norms. Its formal decisions on technical matters express, as nearly as possible, an international consensus. <u>www.iec.ch</u>
Inherently Safe Optical Radiation	Visible or infrared radiation that is incapable of producing sufficient energy under normal or specified fault conditions to ignite a specific hazardous atmospheric mixture.
Intrinsically Safe	According to IEC 60079-28, the term "intrinsically safe" now specifically applies to electrical circuits while "inherently safe" applies to optical radiation. The terms are used interchangeably in this document due to the user's greater familiarity with "intrinsically safe"
ISO	International Organization for Standardization. ISO is the world's largest developer of voluntary International Standards. www.iso.org
LED	Light Emitting Diode. A device used in a transmitter to convert information from electrical to optical form. It typically has a large spectral width. A semiconductor device that emits light when forward biased.
MTBF	Mean Time Between Failures.
Simple Apparatus	As defined in the EC ATEX Guidelines, simple apparatus (exclusions to the Directive) are "equipment and protective systems where the explosion hazard results exclusively from the presence of explosive substances or unstable chemical substances." In other words, under intended use and fault condition, the equipment have no known effective source of ignition.

###